为获得某复杂山体的三维风场特征,采用基于眼镜蛇测量仪的风洞试验方法进行研究。分析各风向角下水平风加速比和竖向风速占比的分布特征,将典型风向的水平风加速比与各国规范进行比较,最终提出复杂山体三维风场的设计建议。研究表明:山顶在各风向角下均存在显著的水平风加速效应;山腰和山脚在侧风风向存在较显著的水平风加速效应;风洞试验结果与美国规范非常接近,中国规范偏保守;最大竖直向风速发生在山腰位置,其中向上竖向风速发生在迎风方向,向下的竖向风速发生在背风方向;规范中的水平风速只针对迎风情况,并不能考虑全风向尤其是侧风向的来流;建议对重要的山体构筑物采用风洞试验方法获得其三维风场。
Abstract
In order to investigate three-dimensional wind field characteristics of a complex hill, a wind tunnel testing method using a Cobra probe was employed.The distribution characteristics of horizontal speed-up ratios and vertical velocity proportions under various wind azimuths were analyzed.The wind speed-up ratios under typical wind azimuths were compared with those regulated in various countries' Codes.Finally, a design proposal to three-dimensional wind field of a complex hill was suggested.Results show that a significant horizontal speed-up effect can be found at the top of the hill under all wind directions.A relatively significant horizontal speed-up effect can be found on the slope and at the foot of the hill in the crosswind direction.The wind tunnel test results are very close to those regulated in the American Code, while the data regulated in the Chinese Code is the most conservative.The maximum vertical wind speed occurs on the slope of hill, where the upward vertical velocity takes place in the windward direction and downward vertical velocity takes place in the leeward direction.The horizontal wind velocity regulated in the Codes is only referred in the windward situation, while the horizontal speed-up effect in all wind directions cannot be considered, especially in the crosswind direction.A wind tunnel testing method is recommended to obtain three-dimensional wind field characteristics for important constructions built on a complex hill.
关键词
风洞试验 /
风速 /
山地地形 /
加速效应 /
竖直向风速
{{custom_keyword}} /
Key words
wind tunnel test /
wind velocity /
hilly terrain /
speed-up effect /
vertical velocity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MILLER C A, DAVENPORT A G. Guidelines for the calculation of wind speed-ups in complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74–76(2):189-197.
[2] WENG W, TAYLOR P A, WALMSLEY J J. Guidelines for airflow over complex terrain: model developments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86(2/3):169-186.
[3] 宋丽莉, 吴站平, 秦鹏, 等. 复杂山地近地层强风特性分析[J]. 气象学报, 2009, 67(3):452-460.
SONG Lili, WU Zhanping, QIN Peng, et al. An analysis of the characteristics of strong winds in the surface layer over a complex terrain[J]. Acta Mteorologica Sinica, 2009, 67(3):452-460.
[4] 张高良. 山区强风特性观测及风洞试验模拟研究[D]. 西安: 长安大学, 2011.
[5] BOWEN A J, LINDLEY D. A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpments shapes[J]. Boundary-Layer Meteorology, 1977, 12(3):259-271.
[6] ISHIHARA T, HIBI K, OIKAWA S. A wind tunnel study of turbulent flow over a three-dimensional steep hill[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1–3):95-107.
[7] 李正良, 魏奇科, 孙毅. 复杂山地风场幅值特性试验研究[J]. 工程力学, 2012, 29(3):184-191.
LI Zhengliang, WEI Qike, SUN Yi. Experimental research on amplitude characteristics of complex hilly terrain wind field[J]. Engineering Mechanics, 2012, 29(3):184-191.
[8] 孙毅, 李正良, 黄汉杰, 等. 山地风场平均及脉动风速特性试验研究[J]. 空气动力学学报,2011, 29(5):593-599.
SUN Yi, LI Zhengliang, HUANG Hanjie, et al. Experimental research on mean and fluctuating wind velocity in hilly terrain wind field[J]. Acta Aerodynamica Sinica, 2011, 29(5):593-599.
[9] 郭文星. 复杂山地地形风场CFD多尺度数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[10] 沈国辉, 姚旦, 余世策, 等. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5):805-812.
SHEN Guohui, YAO Dan,YU Shice, et al. Investigation of wind field characteristics on an isolated hill and two adjacent hills using wind tunnel tests[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(5): 805-812.
[11] 姚旦. 山丘地形风场特性及对输电塔的风荷载作用研究[D]. 杭州: 浙江大学, 2014.
[12] 建筑结构荷载规范:GB50009-2012[S]. 北京: 中国建筑工业出版, 2012.
[13] Minimum design loads for buildings and other structures: ANSI/ASCE 7-10[S]. New York, ASCE, 2010.
[14] European Standard EN1991-1-4, actions on structures[S]. Brussels, European Committee for Standardization, 2004.
[15] Australian/New Zealand standard: AS/NZS 1170.0[S]. Sydney, AS/NZS, 2002.
[16] AIJ recommendations for loads on buildings[S]. Tokyo, Architectural Institute of Japan, 2004.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}