圆柱类金属构件表面裂纹的激光超声识别方法研究

刘学坤,杨世锡,刘永强,池永为,何俊

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 10-17.

PDF(1234 KB)
PDF(1234 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 10-17.
论文

圆柱类金属构件表面裂纹的激光超声识别方法研究

  • 刘学坤,杨世锡,刘永强,池永为,何俊
作者信息 +

Laser ultrasonic identification method for surface cracks on cylindrical metal components

  • LIU Xuekun,YANG Shixi,LIU Yongqiang,CHI Yongwei, HE Jun
Author information +
文章历史 +

摘要

为了利用激光超声技术有效地识别圆柱表面裂纹,提出利用圆柱表面波信号增强和小波包-奇异值分解(WPT-SVD)方法识别圆柱类金属构件表面裂纹的位置和深度。建立了圆柱的激光超声显式有限元模型,分析了圆柱表面裂纹对表面波的模式转化作用。利用圆柱表面裂纹在激发源位置附近时激光超声扫描信号增强的现象,识别圆柱表面裂纹的位置。在已识别圆柱表面裂纹位置的基础上,通过分析圆柱表面裂纹检测信号的时频特点,利用WPT-SVD提取圆柱表面信号的时频特征,定义参数kr表征裂纹深度的变化,识别圆柱表面裂纹深度。搭建了激光超声圆柱表面裂纹检测实验系统,开展了实验研究,实验结果表明所提出的圆柱表面信号增强和WPT-SVD方法可以识别出圆柱表面裂纹的位置和深度。

Abstract

Here, in order to effectively identify cylindrical surface cracks with laser ultrasonic technique, a method of cylindrical surface wave signal enhancement and wavelet packet-singular value decomposition (WPT-SVD) was proposed to identify location and depth of surface cracks on cylindrical metal components.A laser ultrasonic explicit finite element model for a cylinder was established to analyze effects of cylindrical surface cracks on mode transformation of surface waves.The position of a cylindrical surface crack was identified using the phenomenon of laser ultrasonic scanning signal being enhanced during cylindrical surface crack being near excitation source.After crack location was identified, time-frequency characteristics of crack detection signal were analyzed, and these time-frequency characteristics were extracted using WPT-SVD.The parameter kr was defined to characterize crack depth change, and cylindrical surface crack depth was identified.Here, a laser ultrasonic cylindrical surface crack detection test system was built to conduct test study.The test results showed that the proposed method of cylindrical surface wave signal enhancement and WPT-SVD can be used to identify position and depth of cylindrical surface cracks.

关键词

激光超声 / 圆柱 / 表面裂纹 / 识别

Key words

laser ultrasonic / cylinder / surface crack / identification

引用本文

导出引用
刘学坤,杨世锡,刘永强,池永为,何俊. 圆柱类金属构件表面裂纹的激光超声识别方法研究[J]. 振动与冲击, 2020, 39(5): 10-17
LIU Xuekun,YANG Shixi,LIU Yongqiang,CHI Yongwei, HE Jun. Laser ultrasonic identification method for surface cracks on cylindrical metal components[J]. Journal of Vibration and Shock, 2020, 39(5): 10-17

参考文献

[1] Turnbull A. Characterising the early stages of crack development in environment-assisted cracking[J]. Corrosion Engineering Science & Technology, 2017, 52(7):1-8.
[2] Edwards C, Palmer S B. The magnetic leakage field of surface-breaking cracks[J]. Journal of Physics D: Applied Physics, 1986, 19(4): 657-673.
[3] Basheer C M, Krishnamurthy C V, Balasubramaniam K. Hot-rod thermography for defect detection[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2017, 59(9): 484-490.
[4] Choi B H, Kwon I B. Strain pattern detection of composite cylinders using optical fibers after low velocity impacts[J]. Composites Science and Technology, 2018, 154(18): 64-75.
[5] Gaul L, Sprenger H, Schaal C, et al. Structural health monitoring of cylindrical structures using guided ultrasonic waves[J]. Acta Mechanica, 2012, 223(8): 1669-1680.
[6] Viktorov I A. Rayleigh and Lamb Waves: Physical Theory and Applications. Transl. from Russian. With a Foreword by Warren P. Mason[M]. New York: Plenum press, 1967.
[7] Jian X, Dixon S, Guo N, et al. Rayleigh wave interaction with surface-breaking cracks[J]. Journal of Applied Physics, 2007, 101(6):0649061-0649067.
[8] Kenderian S. Phase and Dispersion of Cylindrical Surface Waves[J]. Research in Nondestructive Evaluation, 2010, 21(4):224-240.
[9] Mineo C, Cerniglia D, Pantano A. Numerical study for a new methodology of flaws detection in train axles[J]. Ultrasonics, 2014, 54(3):841-849.
[10] Pan Y, Rossignol C, Audoin B. Acoustic waves generated by a laser line pulse in a transversely isotropic cylinder[J]. Applied physics letters, 2003, 82(24): 4379-4381.
[11] Pan Y, Perton M, Audoin B, et al. Acoustic waves generated by a laser point pulse in a transversely isotropic cylinder[J]. The Journal of the Acoustical Society of America, 2006, 119(1): 243-250.
[12] Zhao Y, Shen Z, Lu J, et al. A numerical study of the interaction of laser-generated circumferential wave with defect on hollow cylinder[J]. Optics & Laser Technology, 2012, 44(2):407-411.
[13] Cavuto A, Martarelli M, Pandarese G, et al. Experimental investigation by laser ultrasonics for high speed train axle diagnostics[J]. Ultrasonics, 2015, 55(1):48-57.
[14] Mineo C, Cerniglia D, Pantano A. Numerical study for a new methodology of flaws detection in train axles[J]. Ultrasonics, 2014, 54(3):841-849.
[15] Clorennec D, Royer D, Walaszek H. Nondestructive evaluation of cylindrical parts using laser ultrasonics[J]. Ultrasonics, 2002, 40(1):783-789.
[16] Scruby C B, Drain L E. Laser ultrasonics techniques and applications[M]. CRC Press, 1990.
[17] Arias I, Achenbach J D. Thermoelastic generation of ultrasound by line-focused laser irradiation[J]. International journal of solids and structures, 2003, 40(25): 6917-6935.
[18] Pantano A, Cerniglia D. Simulation of laser generated ultrasound with application to defect detection[J]. Applied Physics A, 2008, 91(3): 521-528.
[19] Xu B, Shen Z, Wang J, et al. Thermoelastic finite element modeling of laser generation ultrasound[J]. Journal of Applied Physics, 2006, 99(3):0335081-0335087.
[20] Edwards R S, Jian X, Fan Y, et al. Signal enhancement of the in-plane and out-of-plane Rayleigh wave components[J]. Applied Physics Letters, 2005, 87(19):1941041-1941043.
[21] Guan J, Shen Z, Ni X, et al. Numerical simulation of the reflected acoustic wave components in the near field of surface defects[J]. Journal of Physics D: Applied Physics, 2006, 39(6): 1237-1243.
[22] 关建飞,沈中华,许伯强,等.表面垂直裂痕诱发瑞利波散射的数值分析[J]. 应用声学, 2006, 25(3):138-144.
Guan Jian-fei, Shen Zhong-hua, Xu Bo-qiang, et al. Numerical simulation of scattering of Rayleigh wave by a surface-breaking crack[J]. Applied Acoustics, 2006, 25(3):138-144.
[23] 李国宾,关德林,李廷举.基于小波包变换和奇异值分解的柴油机振动信号特征提取研究[J]. 振动与冲击, 2011, 30(8):149-152.
Li Guo-bin, Guan De-lin, Li Ting-ju. Feature extraction of diesel engine vibration signal based on waveletpacket transform and singularity value decomposition[J]. Journal of Vibration and Shock, 2011, 30(8):149-152.
[24] Dan K. A Singularly Valuable Decomposition: The SVD of a Matrix[J]. College Mathematics Journal, 1996, 27(1):2-23.

PDF(1234 KB)

Accesses

Citation

Detail

段落导航
相关文章

/