基于子集分裂模拟的车-桥系统极值响应统计

向活跃1,唐平1,王涛2,李永乐1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 105-111.

PDF(1203 KB)
PDF(1203 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 105-111.
论文

基于子集分裂模拟的车-桥系统极值响应统计

  • 向活跃1,唐平1,王涛2,李永乐1
作者信息 +

Extreme value response statistics of a vehicle-bridge system based on SS/S method

  • XIANG Huoyue1,  TANG Ping1,  WANG Tao2,  LI Yongle1
Author information +
文章历史 +

摘要

车-桥系统的失效属于小概率事件,采用子集分裂模拟方法(Subset Simulation with Splitting,SS/S)对车-桥系统响应进行了分析。首先,采用MATLAB编制了车-桥系统的分析程序,并通过数值算例进行了验证。其次,回顾了SS/S法的基本原理,采用自回归模型(Autoregressive Models,AR模型),对轨道不平顺进行条件模拟,给出了车-桥系统响应的SS/S统计分析框架,并采用数值算例进行了验证。最后,针对车-桥系统,利用SS/S得到了车体竖向和横向加速度超越概率,并与蒙特卡洛法(MCS法)进行了对比验证。结果表明:相较于直接MCS方法,SS/S方法可大幅度减少车-桥系统响应极值超越概率曲线估计时所需的样本,显著提高计算效率。

Abstract

Failure of vehicle-bridge systems is a small probabilistic event.Here, the subset simulation with splitting (SS/S) method was used to calculate responses of a vehicle-bridge system.Firstly, the analysis code for vehicle-bridge systems was programed with the software MATLAB, and verified with numerical examples.Secondly, the basic principle of the SS/S method was reviewed, the autoregressive (AR) model was used to do the conditional simulation for track irregularity to give the SS/S statistical analysis framework for the response of vehicle-bridge system, and this framework was verified with numerical examples.Finally, for a vehicle-bridge system, the SS/S method was used to calculate exceedance probabilities of vehicle body’s vertical and lateral accelerations, and the results were compared with those using Monte Carlo statistics (MCS).The results showed that compared to the direct MCS, the SS/S method can greatly reduce number of required samples used to estimate exceedance probabilities of extreme value responses of a vehicle-bridge system, and significantly improve the calculation efficiency.

关键词

车-桥系统 / 极值响应 / SS/S方法 / AR模型

Key words

vehicle-bridge system / extreme value response / subset simulation with splitting (SS/S) method / AR model

引用本文

导出引用
向活跃1,唐平1,王涛2,李永乐1. 基于子集分裂模拟的车-桥系统极值响应统计[J]. 振动与冲击, 2020, 39(5): 105-111
XIANG Huoyue1, TANG Ping1, WANG Tao2, LI Yongle1. Extreme value response statistics of a vehicle-bridge system based on SS/S method[J]. Journal of Vibration and Shock, 2020, 39(5): 105-111

参考文献

[1] 李永乐,鲍玉龙,向活跃. 基于代理模型的无砟轨道模拟方法及其在车-线-桥分析中的应用[J]. 土木工程学报,2018,51(05):95-102.
LI Yong-le, BAO Yu-long, XIANG Huo-yue. Simulation method and its application in dynamic analysis of vehicle-track-bridge system with ballastless track based on surrogate model [J]. China Civil Engineering Journal, 2018, 51(05): 95-102.
[2] 张楠,夏禾. 基于全过程迭代的车桥耦合动力系统分析方法[J]. 中国铁道科学,2013,34(05):32-38.
ZHANG Nan, XIA He. A vehicle-bridge interaction dynamic system analysis method based on inter-system iteraction [J]. China Railway Science, 2013, 34(05): 32-38.
[3] 李小珍,朱艳,强士中. 高速列车作用下简支梁车桥耦合振动随机响应分析[J]. 振动与冲击,2012,31(04):168-172.
LI Xiao-zhen, ZHU Yan, QIANG Shi-zhong. Stochastic Response Analysis of Train-bridge Coupling System under High Speed Train Loads Excitation [J]. Journal of Vibration and Shock, 2012, 31(04): 168-172.
[4] 曾庆元,郭向荣. 列车桥梁时变系统振动分析理论与应用[M]. 北京:中国铁道出版社,1999.
ZENG Qing-yuan, GUO Xiang-rong. Theory and Application of Train-bridge Time-variant System Vibration Analysis [M]. Beijing: China Railway Publishing House, 1999.
[5] 晋智斌,李小珍,朱艳等. 列车-桥梁耦合系统非线性随机振动分析[J]. 铁道学报,2017,39(09):109-116.
JIN Zhi-bin, LI Xiao-zhen, ZHU Yan, et al. Random vibration analysis of nonlinear vehicle-bridge dynamic interactions [J]. Journal of the China Railway Society, 2017, 39(09): 109-116.
[6] 张志超,赵岩,林家浩. 车桥耦合系统非平稳随机振动分析[J]. 振动工程学报,2007(05):439-446.
ZHANG Zhi-chao, ZHAO Yan, LIN Jia-hao. Non-stationary random vibration analysis for vehicle-bridge coupling systems [J]. Journal of Vibration Engineering, 2007(05): 439-446.
[7] 余志武,谈遂,毛建锋. 基于车桥耦合随机振动的桥梁动力安全性分析[J]. 铁道工程学报,2016,33(09):55-61+112.
YU Zhi-wu, TAN Sui, MAO Jian-feng. Safety analysis of the bridge dynamic performance based on train-bridge coupling random vibration [J]. Journal of Railway Engineering Society, 2016, 33(09): 55-61+112.
[8] Yu Z W, Mao J F, Guo F Q, et al. Non-stationary random vibration analysis of a 3D train–bridge system using the probability density evolution method[J]. Journal of Sound & Vibration, 2016, 366:173-189.
[9] 晋智斌,强士中,李小珍. 轨道不平顺激励下车辆—桥梁垂向随机振动方差解法[J]. 铁道学报,2008,30(6):63-68.
JIN Zhi-bin, QIANG Shi-zhong, LI Xiao-zhen. Covariance method for vehicle-bridge vertical stochastic vibration excited by rail irregularities [J]. Journal of the China Railway Society. 2008, 30(6): 63-68.
[10] JIN Zhi-bin, LI Guo-qi, PEI Shi-ling, et al. Vehicle-induced random vibration of railway bridges: a spectral approach [J]. International Journal of Rail Transportation, 2017, 5(4):191-212.
[11] JIN Zhi-bin, PEI Shi-ling, LI Xiao-zhen, et al. Probabilistic evaluation approach for nonlinear vehicle-bridge dynamic performances [J].Journal of Sound and Vibration,2015, 339:143-456.
[12] 李军强. 演变随机响应问题的统一解法及应用[D]. 西安:西北工业大学,2000.
LI Jun-qiang. A unified approach to evolutionary random response problem and its applications. Xian: Northwestern Polytechnical University, 2000.
[13] 李小珍,晋智斌,朱艳. .车辆-桥梁时变系统随机振动—理论与工程应用[M]. 科学出版社,2017.
LI Xiao-zhen, JIN Zhi-bin, ZHU Yan. Random vibration of vehicle bridge time-varying system-theory and engineering application [M]. Science Press, 2017.
[14] Ching J, Beck J L, Au S K. Hybrid Subset Simulation method for reliability estimation of dynamical systems subject to stochastic excitation[J]. Computer Methods in Applied Mechanics & Engineering, 2005, 194(12-16):1557-1579.
[15] H.J. Pradlwarter, G.I. Schueller, Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation, Probab. Eng. Mech. 1999,14:213–227.
[16]  李永乐. 风—车—桥系统非线性空间耦合振动研究[D]. 成都:西南交通大学,2003.
LI Yong-le. Nonlinear three-dimensional coupling vibration of wind-vehicle-bridge system [D]. Chengdu: Southwest Jiaotong University, 2003.
[17] 黄林. 列车风与自然风联合作用下的车—桥耦合振动分析[D]. 成都:西南交通大学,2007.
HUANG Lin. Ananlysis of vehicle-bridge vibration under train induced wind and natural wind [D]. Chengdu: Southwest Jiaotong University, 2007.
[18] 刘德军. 风—列车—线路—桥梁系统耦合振动研究[D]. 成都:西南交通大学,2010.
LIU Dejun. Coupling vibration study of wind-train-track-bridge system [D]. Chengdu: Southwest Jiaotong University. 2010.
[19] 陈果. 车辆-轨道耦合系统随机振动分析[D]. 成都:西南交通大学,2000.
CHEN Guo. The analysis on random vibration of vehicle/track coupling system [D]. Chengdu: Southwest Jiaotong University. 2000.
[20] Ding J., Chen X., Assessing small failure probability by importance splitting method and its application to wind turbine extreme response prediction, Eng. Struct. 2013,54: 180–191.
[21] 徐丰,詹昊,梁琛. 基于自回归模型的桥梁脉动风场模拟[J]. 武汉工程大学学报,2015,37(03):25-28.
XU Feng, ZHANG Hao, LIANG Chen. Simulation of bridge fluctuating wind field based on Auto-Regressive model [J]. Journal of Wuhan Institute of Technology, 2015, 37(03): 25-28.
[22]张田,夏禾,郭薇薇.基于多维AR模型的桥梁随机风场模拟[J].中南大学学报(自然科学版),2012,43(03):1114-1121.
ZHANG Tian, XIA He, GUO Wei-wei. Simulation of bridge stochastic wind field using multi-variate Auto-Regressive model[J].Journal of Central South University (Science and Technology) ,2012,43(03):1114-1121.
[23] 崔圣爱,刘品,曹艺缤, 等.多线铁路车桥耦合振动仿真研究[J].西南交通大学学报,2017,52(05):835-843.
CUI Sheng-ai,Liu Pin,CAO Yi-bin,et al. Simulation study on multiline vehicle-bridge coupled vibration[J]. Journal of Southwest Jiaotong University,2017,52( 5) : 835-843.
[24] Zhang N, Tian Y, Xia H. A train-bridge dynamic interaction analysis method and its experimental validation[J]. Engineering, 2016, 2(4):528-536.

PDF(1203 KB)

Accesses

Citation

Detail

段落导航
相关文章

/