液压互联馈能悬架工作模式设计与试验研究

汪若尘,孙东,丁仁凯,孟祥鹏,俞峰

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 112-117.

PDF(1902 KB)
PDF(1902 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 112-117.
论文

液压互联馈能悬架工作模式设计与试验研究

  • 汪若尘,孙东,丁仁凯,孟祥鹏,俞峰
作者信息 +

Working mode design and tests for hydraulically interconnected energy-feeding suspension

  • WANG Ruochen, SUN Dong, DING Renkai, MENG Xiangpeng, YU Feng
Author information +
文章历史 +

摘要

针对液压互联悬架在单一的综合性模式下无法实现车辆全局工况最优,设计了一种具有舒适性、安全性和馈能性三种模式的液压互联馈能悬架,在改善车辆行驶平顺性及操纵稳定性的同时回馈振动能量。以路面激励频率作为悬架各模式切换阈值,基于恒流控制方法,设计了多模式控制系统,并得到了各模式下最优电流值。以正弦路面和随机路面为例,对所设计的三种工作模式下的悬架性能进行了仿真分析。结果表明,与综合性模式相比,液压互联馈能悬架在舒适性模式下车身加速度减小10.77%,安全性模式下轮胎动载荷减小17.43%,馈能性模式下理论馈能功率提高19.48%。为验证仿真有效性,试制了悬架原理样机并进行台架试验。结果表明,所提出的三种工作模式能兼顾车辆的平顺性、操稳性和馈能特性。

Abstract

Aiming at the problem of a hydraulically interconnected suspension being not able to realize vehicle’s global working condition optimal under a single integrated mode, a hydraulically interconnected energy-feeding suspension with three modes of comfort, safety and energy-feeding was designed to feedback vibration energy when improving vehicle ride comfort and handling stability.Road excitation frequencies were taken as the suspension’s mode switching thresholds.A multi-mode control system was designed based on the constant current control method, and the optimal current value under each mode was calculated.Taking a sinusoidal road surface and a random one as examples, the suspension performance under designed three working modes was simulated and analyzed, respectively.The results showed that compared with single integrated mode, vehicle body’s acceleration decreases by 10.77% under suspension’s comfort mode; vehicle tire’s dynamic load under suspension’s safety mode drops by 17.43%; theoretical energy-feeding power under suspension’s energy-feeding mode increases by 19.48%.To verify the effectiveness of simulation, a suspension principle prototype was fabricated for bench scale tests.The test results showed that the proposed suspension’s 3 working modes can balance vehicle’s ride comfort, handling stability and energy-feeding characteristics.

关键词

液压互联悬架 / 馈能 / 多模式设计 / 切换阈值 / 最优电流值

Key words

hydraulically interconnected suspension / energy-feeding / multi-mode design / switching threshold / optimal current value

引用本文

导出引用
汪若尘,孙东,丁仁凯,孟祥鹏,俞峰. 液压互联馈能悬架工作模式设计与试验研究[J]. 振动与冲击, 2020, 39(5): 112-117
WANG Ruochen, SUN Dong, DING Renkai, MENG Xiangpeng, YU Feng. Working mode design and tests for hydraulically interconnected energy-feeding suspension[J]. Journal of Vibration and Shock, 2020, 39(5): 112-117

参考文献

[1] NongZhang, Smith W, JekuJeyakumaran. Hydraulically interconnected vehicle suspension: background and modelling[J]. Vehicle System Dynamics International Journal of Vehicle Mechanics & Mobility, 2010, 48(1):17-40.
[2] 刘旭晖. 车身动态稳定系统抗侧倾性能的研究[J]. 汽车工程, 2016, 38(8):967-973.
LIU Xuhui. Research on anti-roll performance of body dynamic stability system[J]. Automotive Engineering,2016, 38(08):967-973.
[3] Zhu S, Du H, Zhang N. Development and implementation of fuzzy, fuzzy PID and LQR controllers for an roll-plane active Hydraulically Interconnected Suspension[C]. IEEE International Conference on Fuzzy Systems. IEEE, 2014:2017-2024.
[4] LAM Q. Experimental Implementation of a fuzzy controller for an active hydraulically interconnected suspension on a sport utility vehicle[C] Proceedings of the 2013 IEEE Intelligent Vehicles Symposium, Gold Coast:Institute of Electrical and Electronics Engineers, 2013, 383-390.
[5] Lam Q, Wang L, Zhang N. Experimental implimentation of a fuzzy controller for an active hydraulically interconnected suspension on a sport utility vehicle[C]. Intelligent Vehicles Symposium. IEEE, 2013:383-390.
[6] WadeA. Smith. Hydraulically interconnected vehicle suspension: handling performance[J]. Vehicle System Dynamics, 2011, 49(1-2):87-106.
[7] 汪若尘, 叶青, 孙泽宇,等. 液压互联ISD悬架系统模式切换研究[J]. 机械工程学报, 2017, 53(6):110-115.
Wang R, Ye Q, Sun Z, et al. A study of the hydraulically interconnected inerter-spring-damper suspension system[J]. Mechanics Based Design of Structures & Machines, 2017, 45:págs. 415-429.
[8] 汪若尘, 蒋秋明, 叶青,等. 液压互联馈能悬架特性分析与试验[J]. 农业机械学报, 2017, 48(8):350-357.
Wang R, Jiang Q, Qing Y E, et al. Characteristics Analysis and Experiment of Hydraulic Interconnected Energy-regenerative Suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017.
[9] 陈龙, 张承龙, 汪若尘,等. 液压互联式馈能悬架建模与优化设计[J]. 农业机械学报, 2017, 48(1):303-308.
Chen L, Zhang C, Wang R, et al. Modeling and Optimization Design of Hydraulically Interconnected Energy-regenerative Suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017.
[10] 蒋秋明. 液压互联馈能悬架特性分析与试验研究[D]. 江苏大学, 2017.
[11] Yang J Q, Huang J. Direct torque control system for induction motors with fuzzy speed PI regulator[C]// International Conference on Machine Learning and Cybernetics. IEEE, 2005:778-783 Vol. 2.
[12] 汪若尘, 钱禹辰, 丁仁凯,等. 基于LQG的混合电磁悬架阻尼-刚度设计及试验研究[J]. 振动与冲击, 2018(3):61-65.
Wang R, Qian Y, Ding R, et al. Design and tests for damping-stiffness of a hybrid electromagnetic suspension based on LQG[J]. Journal of Vibration & Shock, 2018.

PDF(1902 KB)

448

Accesses

0

Citation

Detail

段落导航
相关文章

/