为了研究双层球面网壳结构响应对于序列地震是否敏感、避免结构在主震后的余震作用下发生倒塌,首先建立了基于通用有限元软件ABAQUS的结构有限元模型,并对太平洋地震工程研究中心(PEER)数据库中的主余震序列地震动数据进行了筛选,共收集到342对主余震序列地震动时程数据;利用全荷载域动力时程分析方法,获得了各序列地震作用下结构的特征响应随加速度幅值的变化规律,归类并定义了网壳结构多重地震效应的四种影响程度;然后,对大量算例的结果进行统计,得到了在主震结束时的网壳特征响应(最大节点位移、屈服杆件比例和结构损伤因子)与结构抵抗余震能力的关系;最终将屈服杆件比例作为衡量双层球面网壳抵抗余震能力的指标,并给出了各跨度双层球面网壳屈服杆件比例的敏感界限值。研究成果可为网壳结构的抗震设计及抗震性能评估提供参考。
Abstract
To study whether or not structural responses of double-layer reticulated domes was sensitive to sequence earthquake to avoid structure collapse under aftershocks, a structure’s finite element model was established based on the finite element software ABAQUS.Data of main shock and aftershock responses to sequence earthquake in database of the pacific earthquake engineering research center (PEER) were selected to collect 342 groups of main shock and aftershock acceleration response time histories data.The dynamic time history analysis method in full load domain was adopted to obtain variation laws of structural characteristic responses with changes of acceleration amplitude under various sequence earthquakes.4 effect levels on reticulated shell structures’ multiple seismic responses were classified and defined.Then, statistic analysis was done for a lot of example results to obtain the relation between reticulated shells’ characteristic responses of maximum nodal displacement, proportion of yield members and structural damage factor when main shock was over and structures’ anti-aftershock ability.Finally, the proportion of yield members was taken as the index to measure double-layer reticulated domes’ anti-aftershock ability, and sensitive limit values of proportion of yield members for double-layer reticulated domes with different spans were given.The study results provided a reference for aseismic design and aseismic performance evaluation of reticulated shell structures.
关键词
双层球面网壳 /
序列地震 /
余震 /
屈服杆件比例 /
结构损伤因子
{{custom_keyword}} /
Key words
double-layer reticulated dome /
sequence earthquake /
aftershock /
proportional of yield members /
structural damage factor
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈清军, 李文婷. 序列地震动作用下复杂高层结构的反应特征分析[J]. 力学季刊, 2014, 35(2): 308-317. CHEN Qing-jun, LI Wen-ting. Response characteristics analysis of complex high-rise buildings under seismic sequence[J]. Chinese Quarterly of Mechanics, 2014, 35(2): 308-317.
[2] 边冠博. 汶川地震的主余震统计特性及其对结构反应的影响[D]. 大连:大连理工大学,2012.
BIAN Guan-bo. The statistical property of mainshock-aftershock sequences of Wenchuan Earthquake and its impact on the structures[D]. Dalian: Dalian University of Technology, 2012.
[3] 吴波, 欧进萍. 钢筋砼结构在主余震作用下的反应与损伤分析[J]. 建筑结构学报, 1993, 14(5): 45-53.
WU Bo, Ou Jin-ping. Response and damage analysis of reinforced concrete structures under main shock and aftershocks[J]. Journal of Building Structures, 1993, 14(5): 45-53.
[4] Ruiz-Garcia J, V. Marin M, Teran-Gilmore A. Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites[J]. Soil Dynamics and Earthquake Engineering, 2014, 63(3): 56-68.
[5] Raghunandan M, Liel A B, Luco N. Aftershock collapse vulnerability assessment of reinforced concrete frame structures[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(3): 419-439.
[6] Han R L, Li R, Van De Lindt J. Impact of aftershocks and uncertainties on the seismic evaluation of non-ductile reinforced concrete frame buildings[J]. Engineering Structures, 2015, 100: 149-163.
[7] Ruiz-Garcia, J., and Negrete-Manriquez, J. C. Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences[J]. Engineering Structures, 2011, 33(2): 621-634.
[8] Li, Q., and Ellingwood, B. R. Performance evaluation and damage assessment of steel frame buildings under main shock–aftershock earthquake sequence[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(3): 405–427.
[9] 庄鹏, 王文婷, 韩淼, 薛素铎. 摩擦-SMA弹簧复合耗能支撑在周边支承单层球面网壳结构中的减震效应研究[J]. 振动与冲击, 2018, 37(4): 99-109.
ZHUANG Peng, WANG Wen-ting, HAN Miao, XUE Su-duo. Seismic control effect of friction-SMA spring hybrid energy dissipation braces in a single-layer spherical lattice shell with surrounding columns[J]. Journal of Vibration and Shock, 2018, 37(4): 99-109.
[10] 周锟, 王秀丽, 周岱, 王磊, 江磊, 吴长. 新型网壳减震体系弹塑性时程分析与振动台实验研究[J]. 振动与冲击, 2013, 32(21): 27-34.
ZHOU Kun, WANG Xiu-li, ZHOU Dai, WANG Lei, JIANG Lei, WU Chang. Elasto-plastic time-history analysis and shaking table test for a new energy-dissipation system of reticulated shell structure[J]. Journal of Vibration and Shock, 2013, 32(21): 27-34.
[11] 刘河江, 邓华. 罕遇地震下双层球面网壳的弹塑性动力响应分析[J]. 振动与冲击, 2012, 31(24): 161-167+176.
LIU He-jiang, DENG Hua. Elasto-plastic response analysis for double-layer spherical reticulated shells under rare earthquake[J]. Journal of Vibration and Shock, 2012, 31(24): 161-167+176.
[12] JGJ 7-2010. 空间网格结构技术规程[S]. 北京: 中国建筑工业出版社, 2010.
Technical specification for space frame structures[S]. Beijing: China Architecture Industry Press, 2010.
[13] 吴波, 欧进萍. 主震与余震的震级统计关系及其地震动模型参数[J]. 地震工程与工程振动, 1993, 13(3): 28-29.
WU Bo, OU Jin-ping. Statistical relationship between magnitudes of mainshock and aftershock and parameters of earthquake ground motion[J]. Earthquake Engineering and Engineering Vibration, 1993, 13(3): 28-29.
[14] 陶林惠, 李杰. 中美抗震设计规范主要地震动参数的对比研究[J]. 南方能源建设, 2015, 2(3): 122-125.
TAO Lin-hui, LI Jie. Comparative study on the main parameters of ground motions in seismic design codes in China and America[J]. Southern Energy Construction, 2015, 2(3): 122-125.
[15] 钟杰. 网壳结构的概率地震易损性分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.
ZHONG Jie. Probabilistic seismic fragility analysis of reticulated shells[D]. Harbin: Harbin Institute of Technology, 2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}