为研究马赫波冲击波参数的变化规律以及装药类型和装药形状对三波点迹线的影响,采用有限元分析软件AUTODYN建立了TNT装药近地面空中爆炸的有限元模型,将计算结果与试验结果进行了对比,两者吻合良好。在此基础上,对不同装药形状和装药类型的炸药进行了近地面空中爆炸的数值模拟。研究结果表明:马赫波波阵面上的冲量随高度增大而缓慢减小,超压峰值随高度增大先缓慢下降而后迅速减小。马赫波与地面近似垂直,其顶部的超压峰值仅为底部的67.6%~80.3%,顶部的冲量为底部的91.3%~99.0%。球形装药和长径比为1的柱状装药的三波点迹线几乎完全相同,柱状装药长径比越大,马赫波高度反而越小。C4炸药形成的马赫波高度略大于B炸药,但两者较为接近,TNT形成的马赫波高度明显小于C4和B炸药。
Abstract
In order to study variation law of Mach wave’s parameters and effects of charge type and charge shape on triple-point trajectory, the finite element analysis software AUTODYN was adopted here to establish a finite element model of TNT charge in air explosion near ground.The calculated results were compared with test ones, and the former agreed well with the latter.Then, numerical simulations were performed for near-ground air explosions with different charge shapes and charge types.The results showed that impulse on Mach wave front surface decreases slowly with increase in height, overpressure peak value firstly decreases slowly with increase in height and then decreases rapidly; Mach wave is approximately perpendicular to ground, overpressure peak value at its top is only 67.6%-80.3% of that at its bottom, and impulse at its top is 91.3%-99.0% of that at its bottom; triple-point trajectory of spherical charge and that of column one with a length to diameter ratio of 1 are almost identical; the larger the length to diameter ratio of column charge, the smaller the height of Mach wave; Mach wave height formed with C4 explosive is slightly larger than that with B explosive, but they are relatively close to each other; Mach wave height formed with TNT is obviously smaller than those with C4 and B explosives
关键词
马赫波 /
空中爆炸 /
数值模拟 /
三波点迹线 /
AUTODYN
{{custom_keyword}} /
Key words
Mach wave /
air explosion /
numerical simulation /
triple-point trajectory /
AUTODYN
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shin J, Whittaker A S, Aref A J, et al. Reflection coefficients and reflected scaled impulses from detonations of high explosives as a function of angle of incidence[J]. Journal of Structural Engineering, 2017, 143(7):13-21.
[2] 方秦,柳锦春. 地下防护结构[M].北京:中国水利水电出版社,2010.
[3] 周子龙,李夕兵,洪亮.地下防护工程与结构[M]. 长沙:中南大学出版社, 2014.
[4] 张千里, 张耀, 年鑫哲. 混凝土防爆墙对爆炸冲击波传播的影响[J]. 振动与冲击, 2013, 32(24):192-197.
ZHANG Qianli, ZHANG Yao, NIAN Xinzhe. Effect of concrete protective wall on explosion shock wave [J]. Journal of Vibration and Shock, 2013, 32(24):192-197.
[5] E. J. Bryant, R. A. Eberhard, C. N. Kingery. Mach reflection over hard packed dirt and dry sand,BRL Report No. 809 [R]. 1952.
[6] Eichinger W E. Mach stem modeling with spherical shock waves[J]. Mach Stem Modeling with Spherical Shock Waves, 1985.
[7] 郭炜,俞统昌,金朋刚. 三波点的测量与实验技术研究[J]. 火炸药学报, 2007, 30(4):55-57.
GUO Wei, YU Tongchang, JIN Penggang. Test of Triple Point and Study on its Test Technology[J]. Chinese Journal of Explosives & Propellants, 2007, 30(4):55-57.
[8] 杜红棉, 曹学友, 何志文,等. 近地爆炸空中和地面冲击波特性分析和验证[J]. 弹箭与制导学报, 2014, 34(4):65-68.
DU Hongmian, CAO Xueyou, HE Zhiwen, et al. Analysis and Validation for Characteristics of Air and Ground Shock Wave Near Field Explosion [J]. Journal of Projectiles, rockets, Missiles and Guidance, 2014, 34(4):65-68.
[9] 易仰贤. 空爆冲击波马赫反射近似计算[J]. 爆炸与冲击, 1983, 3(2):44-49.
YI Yangxian. Approximate calculation of Mach reflection of explosives shock waves in air[J]. explosion and shock waves, 1983,3(2): 44-49.
[10] DoD. Design of structures to resist the effects of accidental
explosives. Report No. UFC 3-340-02,Washington D.C. ,2008.
[11] AUTODYN explicit software for nonlinear dynamics user manual [M]. Pennsylvania, US: ANSYS Inc, 2005.
[12] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究[J]. 振动与冲击, 2017, 36(5):23-29.
GENG Zhengang, LI Xiudi, MIAO Chaoyang, et al. Propagation of blast wave of thermobaric explosive inside a tunnel[J]. Journal of Vibration and Shock, 2017, 36(5):23-29.
[13] 赵铮,陶钢,杜长星.爆轰产物JWL状态方程应用研究[J].高压物理学报,2009,23(4):277-282.
ZHAO Zheng, TAO Gang, DU Changxin. Application Research on JWL Equation of State of Detonation Products[J]. CHINESE JOURNAL OF HIGH PRESSURE P HYSICS, 2009,23(4):277-282.
[14] 王成, 徐文龙, 郭宇飞. 基于基因遗传算法和γ律状态方程的JWL状态方程参数计算[J]. 兵工学报, 2017(s1):167-173.
WANG Cheng, XU Wenlong, GUO Yufei. Calculation of JWL Equation of State Parameters Based on Genetic Algorithm and γ Equation of State [J]. Acta Armamentarii,2017(s1):167-173.
[15] Shi Y, Zhongxian L I, Hong H. Mesh Size Effect in Numerical Simulation of Blast Wave Propagation and Interaction with Structures[J]. Transactions of Tianjin University, 2008, 14(6):396-402.
[16] Lei S, Xiu-Li D U, Xin F. A Study on the Mesh Generation Method for Numerical Simulation of Blast Wave[J]. Journal of Beijing University of Technology, 2010, 36(11):1465-1470.
[17] KRAUTHAMMER T. Modern protective structures (civil and environmental engineering) [M]. Boca Raton: CRC Press, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}