基于改进VMD的风电齿轮箱不平衡故障特征提取

周福成1,唐贵基2,何玉灵2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 170-176.

PDF(881 KB)
PDF(881 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 170-176.
论文

基于改进VMD的风电齿轮箱不平衡故障特征提取

  • 周福成1,唐贵基2,何玉灵2
作者信息 +

Unbalanced fault feature extraction for wind power gearbox based on improved VMD

  • ZHOU Fucheng1, TANG Guiji2, HE Yuling2
Author information +
文章历史 +

摘要

变分模态分解(Variational Mode Decomposition, VMD)是一种不同于递归式模态分解新方法,具有优良的频率剖分特性,但其在处理信号时受分量个数影响严重,通过主观经验难以合理设置该参数。针对该问题,利用奇异值分解清晰的信噪分辨能力,根据奇异值最佳有效秩阶次自动搜寻VMD的分量个数,提出了一种改进变分模态分解的风电齿轮箱不平衡故障特征提取方法。通过仿真信号及轴不平衡实验信号对该方法进行了验证,并将其应用于风电齿轮箱稳定工况下的现场故障诊断中,均成功提取出微弱特征频率信息,实现对齿轮箱不平衡故障的有效判别,具有一定可靠性。

Abstract

Variational mode decomposition (VMD) is a new modal decomposition method different from recursive one, and has a good frequency partition characteristics.However, it is seriously affected by number of components in signal processing, so it is difficult to set up its parameters rationally with subjective experience.Here, to solve this problem, the singular value decomposition (SVD) with clear signal-to-noise resolution ability was used to automatically search component number of VMD according to the optimal effective rank order of singular value, and propose an improved VMD method for unbalanced fault feature extraction of a wind power gearbox.Simulated signals and shaft unbalance test ones were used to verify the proposed method.The proposed method was applied in field fault diagnosis of a wind power gearbox under stable working condition to successfully extract weak fault feature frequency information, and realize effective judgement for wind power gearbox’s unbalanced fault with certain reliability.

关键词

改进变分模态分解 / 风力发电机 / 不平衡故障 / 故障特征提取 / 现场数据

Key words

improved variational modal decomposition / wind turbine / unbalanced fault / fault feature extraction / field data 

引用本文

导出引用
周福成1,唐贵基2,何玉灵2. 基于改进VMD的风电齿轮箱不平衡故障特征提取[J]. 振动与冲击, 2020, 39(5): 170-176
ZHOU Fucheng1, TANG Guiji2, HE Yuling2. Unbalanced fault feature extraction for wind power gearbox based on improved VMD[J]. Journal of Vibration and Shock, 2020, 39(5): 170-176

参考文献

[1] Huang N. E., Shen Z., Long S. R., et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society A, 1998, 454(1971):903-995.
[2] Liu H. H., Han M. H.. A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings [J]. Mechanism and Machine Theory, 2014, 75:67-78.
[3] Dragomiretskiy K., Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[4] 王晓龙. 基于振动信号处理的滚动轴承故障诊断方法研究[D].华北电力大学(北京),2017.
WANG Xiao-long. Research on fault diagnosis method of rolling bearing based on vibration signal processing[D]. North China Electric Power University(beijing), 2017.
[5] 唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(05):73-81.
TANG Guiji, WANG Xiaolong. Parameter Optimized Variational Mode Decomposition Method withApplication to Incipient Fault Diagnosis of Rolling Bearing[J]. Journal of Xi’An Jiaotong University, 2015,v49(05):73-81.
[6] 刘长良,武英杰,甄成刚.基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J].中国电机工程学报,2015,35(13):3358-3365.
LIU Changliang, WU Yingjie, ZHEN Chenggang. Rolling bearing fault diagnosis based on variational mode  decomposition and fuzzy c means clustering[J]. Proceedings of the CSEE, 2015, v35(13): 3358-3365.
[7] 马增强,李亚超,刘政,等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击,2016,35(13):134-139.
MA Zengqiang,LI Yachao,LIU Zheng,et al. Rolling bearings' fault feature extraction based on variational mode decomposition and Teager energy operator[J]. Journal of Vibration And Shock, 2016,v35(13):134-139.
[8] 孙灿飞,王友仁,沈勇,陈伟.基于参数自适应变分模态分解的行星齿轮箱故障诊断[J].航空动力学报,2018(11):2756-2765.
SUN Canfei, WANG Youren, SHEN Yong, et al. Fault diagnosis of planetary gearbox based on adaptive parameter variational mode decomposition[J]. Journal of Aerospace Power, 2018,v11:2756-2765.
[9] 张瑶,张宏立.基于VMD多特征量风电机组轴承故障诊断法[J].计算机仿真,2018,35(09):98-102.
ZHANG Yao,ZHANG Hongli. Bearing fault diagnosis method for wind turbine based on VMD[J]. Journal of Computer Simulation, 2018, v35(09):98-102.
[10] Abdoos A. A.. Detection of current transformer saturation based on variational mode decomposition analysis [J]. Transmission & Distribution, 2016, v10(11): 2658-2669.
[11] Sivavaraprasad G., Sree R, Padmaja, et al. Mitigation of ionospheric scintillation effects on gnss signals using variational mode decomposition[J]. Geoscience and Remote Sensing Letters, 2017, v14(3): 389-393.
[12] Liu W, Cao S, Wang Z, et al. Spectral decomposition for hydrocarbon detection based on VMD and teager–kaiser energy [J]. Geoscience and Remote Sensing Letters, 2017, v14(4): 539-543.
[13] Lahmiri S. Comparing variational and empirical mode decomposition in forecasting day-ahead energy prices [J]. Systems Journal, 2017, v11(3): 1907-1910.
[14] Yang W, Peng Z, Wei K, et al. Superiorities of variational mode decomposition over empirical mode decomposition particularly in time–frequency feature extraction and wind turbine condition monitoring [J]. Renewable Power Generation, 2017, v11(4): 443-452.

PDF(881 KB)

Accesses

Citation

Detail

段落导航
相关文章

/