前端调速型风电机组动力学建模与运行特性研究

尹文良,芮晓明

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 18-24.

PDF(1446 KB)
PDF(1446 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 18-24.
论文

前端调速型风电机组动力学建模与运行特性研究

  • 尹文良,芮晓明
作者信息 +

Dynamic modeling and operation performance of wind turbine set based on its front-end speed regulating mechanism

  • YIN Wenliang,RUI Xiaoming
Author information +
文章历史 +

摘要

基于先进的机械调速与伺服控制技术,提出了一种带有发电机前端无极调速器的混合传动风电机组方案,以实现变速恒频。利用集中质量与拉格朗日方法,建立该机组传动系统动力学模型。并利用动力学方程建立1.5 MW前端调速型风电机组的Simulink仿真,实现对机组调速精度、功率消耗、电流谐波与低电压穿越能力等运行特性的深入研究。结果表明:在不同的风速条件下,所提机组不仅可以在调速功率消耗较小的情况下输出恒频电能(占比小于输出功率的15.25%),还可以有效抑制电流谐波污染,改善机组低电压穿越能力。理论分析与仿真研究验证了该机组的实用性和优越性。

Abstract

Based on advanced mechanical speed regulating and servo control techniques, a hybrid-drive wind turbine (WT) set with a generator front-end nonpolar speed regulator was proposed to realize its working mode of variable-speed constant-frequency (VSCF).The dynamic model for the WT’s transmission system was established using the lumped mass method and Lagrange’s equations.Based on the derived dynamic equations, The Simulink simulation model for a 1.5 MV WT set with front-end speed-regulating was built to deeply study its operation characteristics including speed-regulating accuracy, power consumption, current harmonic wave pollution and low-voltage ride-through (LVRT) capability.The results showed that under condition of different wind speeds, the proposed WT set can not only output constant-frequency electric power with smaller power dissipation (less than 15.25% of output power) of speed regulating, but also effectively suppress current harmonic wave pollution and improve the WT set’s LVRT capability; the practicability and superiority of the proposed WT set are verified with theoretical analysis and simulation study.

关键词

风力发电 / 前端调速 / 动力学建模 / 运行特性 / 低电压穿越

Key words

wind power generation / front-end speed regulating / dynamic modeling / operating performance / low-voltage ride-through (LVRT)

引用本文

导出引用
尹文良,芮晓明. 前端调速型风电机组动力学建模与运行特性研究[J]. 振动与冲击, 2020, 39(5): 18-24
YIN Wenliang,RUI Xiaoming. Dynamic modeling and operation performance of wind turbine set based on its front-end speed regulating mechanism[J]. Journal of Vibration and Shock, 2020, 39(5): 18-24

参考文献

[1] 唐西胜,苗福丰,齐智平,等. 风力发电的调频技术研究综述[J]. 中国电机工程学报,2014, 34(25): 4304-4314.
TANG Xi-sheng, MIAO Fu-feng, Qi Zhi-ping, et al. Survey on Frequency Control of Wind Power [J]. Proceedings of the CSEE, 2014, 34(25): 4304-4314.
[2] HE D X. Coping with climate change and China's wind energy sustainable development [J]. Advances in Climate Change Research, 2016, 7(1-2): 3-9.
[3] 沈岗,向东,牟鹏,等. 风电装备整体式动力学建模与仿真分析[J]. 振动与冲击,2015,34(14):129-134.
SHEN Gang, XIANG Dong, MU Peng, et al. Integral dynamic modeling and simulation of wind turbine [J]. Journal of vibration and shock, 2015, 34(14): 129-134.
[4] YANG L, XU Z, ØSTERGAARD J, et al. Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system [J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 328-339.
[5] RIBRANT J, BERTLING L. Survey of failures in wind power systems with focus on Swedish wind power plants during 1997-2005 [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 167-173.
[6] 李富柱,Wen Chen,王存堂,等. 新型变速恒频风力发电系统的非线性控制器设计[J]. 太阳能学报,2015, 36(10): 2429-2434.
LI Fu-zhu, WEN Chen, WANG Cun-tang, et al. Design of nonlinear controller of novel variable speed constant frequency wind power system [J]. Acta Energiae Solaris Sinica, 2015, 36(10): 2429-2434.
[7] KESRAOUI M, CHAIB A, MEZIANE A, et al. Using a DFIG based wind turbine for grid current harmonics filtering [J]. Energy Conversion and Management, 2014, 78: 968-975.
[8] LING Y, DOU Z L, GAO Q, et al. Improvement of the low-voltage ride-through capability of doubly fed induction generator wind turbines [J]. Wind Engineering, 2012, 36(5): 535-551.
[9] IDAN M, LIOR D. Continuously variable speed wind turbine transmission concept and robust control [J]. Wind Engineering, 2000, 24(3): 151-167.
[10] REX A H, JOHNSON K E. Methods for controlling a wind turbine system with a continuously variable transmission in region 2 [J]. Journal of Solar Energy Engineering-Transactions of the ASME, 2009, 131(3): 121-128.
[11] ZHAO X, MAIßE P. A novel power splitting drive train for variable speed wind power generators [J]. Renewable Energy, 2003, 28(13): 2001-2011.
[12] JELASKA D, PODRUG S, PERKUŠIĆ M. A novel hybrid transmission for variable speed wind turbines [J]. Renewable Energy, 2015, 83: 78-84.
[13] 穆安乐,刘宏昭,张明洪,等. 新型变速恒频风能转换系统的实现原理与运动学分析[J]. 机械工程学报,2008, 44(1): 196-204.
MU An-le, LIU Hong-zhao, ZHANG Ming-hong, et al. Theory and kinematic analysis of a novel variable speed constant frequency wind energy conversion system [J]. Chinese Journal of Mechanical Engineering, 2008, 44(1): 196-204.
[14] RUI X M, LI L, LI X M. Fundamentals of a power splitting driving chain for large wind turbines [C]// Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008: 9347–9350.
[15] RUI X M, SU R, WU X, et al. The conceptual design of grid-connected wind turbine based on speed regulating differential mechanism [J]. Journal of Mechanical Science and Technology, 2014, 28(6): 2015-2220.
[16] SU R, RUI X M, WU X, et al. The design and analysis of wind turbine based on differential speed regulation[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(2): 221-229.
[17] Wu X, Ma Z Y, Rui X M, et al. Speed control for the continuously variable transmission in wind turbines under subsynchronous resonance [J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2016, 40(2): 151-154.
[18] 芮晓明,尹文良,武鑫等. 网端负载波动时混合传动风电系统的控制方法[J]. 中国电机工程学报,2017, 37(13): 3809-3815.
RUI Xiao-ming, YIN Wen-liang, WU Xin et al. The control strategy of hybrid drive wind power generation system during load fluctuation in the grid [J]. Proceedings of the CSEE, 2017, 37(13): 3809-3815.
[19] YIN W L, WU X, RUI X M. Adaptive robust backstepping control of the speed regulating differential mechanism for wind turbines [J]. IEEE Transactions on Sustainable Energy, 2018. https://doi.org/10.1109/TSTE.2018.2865631.
[20] Rui X M, Yin W L, Dong Y X, et al. Fractional-order sliding mode control for hybrid drive wind power generation system with disturbances in the grid [J]. Wind Energy, 2018. https://doi.org/10.1002/we.2269
[21] LIU Q, APPUNN R, HAMEYER K. Wind turbine with mechanical power split transmission to reduce the power electronic devices: an experimental validation [J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8811-8820.
[22] 罗肿佑. 行星齿轮机构[M]. 北京:高等教育出版社,1984.
LUO Zhong-you. Planetary Gear Mechanism [M]. Beijing: Higher Education Press, 1984.
[23] SLOOTWEG J G, DE HAAN S W H, POLINDER H, et al. General model for representing variable speed wind turbines in power system dynamics simulations [J]. IEEE Transactions on Power System, 2003, 18(1): 144-151.
[24] MELÍCIO R, MENDES VMF, CATALÃO JPS. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation [J]. Renewable Energy, 2010, 35(10): 2165-2174.
[25] 邵忍平. 机械系统动力学[M]. 北京:机械工业出版社,2005.
SHAO Ren-ping. Dynamics of Mechanical Systems [M]. Beijing: Mechanical Industry Press, 2005.
[26] 向玲,高楠,唐亮,等. 支承刚度变化下风电齿轮传动系统的非线性动力学特性[J]. 振动与冲击,2019, 38(1): 103-109.
XIANG Ling, GAO Nan, TANG Liang, et al. Nonlinear dynamic characteristics of wind turbine gear transmission system with varying support stiffness. Journal of vibration and shock, 2019, 38(1): 103-109.
[27] 姚骏,陈西寅,廖勇等. 抑制负序和谐波电流的永磁直驱风电系统并网控制策略[J]. 电网技术,2011, 35(7): 29-35.
YAO Jun, CHEN Xi-yin, LIAO Yong et al. A grid-connection control strategy to suppress negative-sequence and harmonic currents for permanent magnet direct-driven wind power generation system [J]. Power System Technology, 2011, 35(7): 29-35.

PDF(1446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/