冲击激励下含限位器的气囊-船用旋转机械系统的动力学特性分析

李鹏超,李明

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 183-187.

PDF(989 KB)
PDF(989 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 183-187.
论文

冲击激励下含限位器的气囊-船用旋转机械系统的动力学特性分析

  • 李鹏超,李明
作者信息 +

Dynamic characteristics of an airbag-marine rotating machinery system with displacement restrictor under shock excitation

  • LI Pengchao,  LI Ming
Author information +
文章历史 +

摘要

主要研究了冲击激励下含限位器的气囊-旋转机械系统的动力学特性。首先,考虑了轴承的非线性油膜力和转子的不平衡力等因素,建立了在冲击激励下气囊-旋转机械系统的非线性动力学模型;然后,采用数值模拟的方法分析了冲击激励下,限位器对气囊-旋转机械系统动力学特性的影响,讨论了在限位器不同刚度比、安装间隙、阻尼比等参数下气囊-旋转机械系统的动力学响应。结果表明:限位器的刚度和安装间隙对冲击激励下系统的最大相对位移和绝对加速度有较大影响,而阻尼对其影响会随着刚度比的增大而减小。

Abstract

Dynamic characteristics of an airbag-marine rotating machinery system with displacement restrictor under shock excitation were studied.Firstly, the nonlinear dynamic model of the airbag-rotating machinery system under shock excitation was established considering nonlinear oil film force of bearings and unbalance force of rotor.Then, the numerical simulation method was used to analyze effects of displacement restrictor on dynamic characteristics of the system under shock excitation, and discuss dynamic responses of the system under variation of displacement restrictor’s parameters including stiffness ratio, installation clearance and damping ratio.The results showed that displacement restrictor’s stiffness ratio and installation clearance have larger effects on the system’s maximum relative displacement and absolute acceleration under shock excitation, while effects of damping ratio decrease with increase in stiffness ratio.

关键词

气囊-旋转机械系统 / 限位器 / 冲击激励 / 非线性动力学

Key words

airbag-rotating machinery system / displacement restrictor / shock excitation / nonlinear dynamics

引用本文

导出引用
李鹏超,李明. 冲击激励下含限位器的气囊-船用旋转机械系统的动力学特性分析[J]. 振动与冲击, 2020, 39(5): 183-187
LI Pengchao, LI Ming . Dynamic characteristics of an airbag-marine rotating machinery system with displacement restrictor under shock excitation[J]. Journal of Vibration and Shock, 2020, 39(5): 183-187

参考文献

[1] 汪玉, 赵建华. 船舶柴油机抗冲击性能分析与评估技术[M]. 北京:科学出版社, 2014.
WANG Yu, ZHAO Jian-hua. Analysis and evaluation technology for impact resistance of marine diesel engine[M]. Beijing:Science Press, 2014.
[2] ZHANG Tao, LIU Tu-guang, XIONG You-lun, et al. Dynamic buckling of stiffened plates under fluid-solid impact load[J]. Applied Mathematics and Mechanics, 2004, 25(7):827-835.
[3] GONG Shi-wei, LAM K Y. On attenuation of floating structure response to underwater shock[J]. International Journal of Impact Engineering, 2006, 32(11):1857-1877.
[4] 崔杰, 李烨, 陈莹玉, 等. 舰船全船冲击环境数值预报方法研究[J]. 振动与冲击, 2015, 34(17):88-93.
CUI Jie, LI Ye, CHEN Ying-yu, et al. Numerical prediction methods for shock environmental of ship's entire hull[J]. Journal of Vibration and Shock,2015, 34(17):88-93.
[5] 王秀丽, 马肖彤, 梁亚雄, 等. 斜向冲击下单层网壳结构的动力响应试验[J]. 振动、测试与诊断, 2016, 36(3):445-450.
WANG Xiu-li, MA Xiao-tong, LIANG Ya-xiong, et al. Test Research on Dynamic Behavior of Single-Layer Reticulated Dome Subjected to Inclined Impact Load[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(3):445-450.
[6] 陈辉, 李玉节, 潘建强, 等. 水下爆炸条件下不同装药对水面舰船冲击环境的影响试验研究[J]. 振动与冲击, 2011, 30(7):16-20.
CHEN Hui, LI Yu-jie, PAN Jian-qiang, et al. Tests for influence of different charges in UNDEX on shock environment of surface war ships[J]. Journal of Vibration and Shock,2011, 30(7):16-20.
[7] CHONG Ji, GAO Fu-yin, LI Xing-hua. Dynamic buckling behaviors of steel cylindrical shell subjected to conventional explosion impact loading[J]. Advanced Materials Research, 2013, 800:196-200.
[8] ZHANG A-man, ZHOU Wei-xing, WANG Shi-ping, et al. Dynamic response of the non-contact underwater explosions on naval equipment[J]. Marine Structures, 2011, 24(4):396-411.
[9] 翁雪涛, 朱石坚, 何琳. 限位器抗冲击计算[J]. 中国造船, 2002, 43(2):85-89.
WENG Xue-tao, ZHU Shi-jian, HE Lin. Calculation of Shock Resistance Performance Restrictor[J]. Shipbuilding of China, 2002, 43(2):85-89.
[10] 张春辉, 曾凡明, 计晨, 等. 一种新型恒力限位器的隔冲性能研究[J]. 船舶力学, 2016, 20(1-2):216-221.
ZHANG Chun-hui, ZENG Fan-ming, JI Chen, et al. Anti-shock performance of novel constant-force displacement restrictors[J]. Journal of Ship Mechanics,2016, 20(1-2):216-221.
[11] YAN Li-xun, XUAN Shou-hu, GONG Xing-long. Shock isolation performance of a geometric anti-spring isolator[J]. Journal of Sound and Vibration, 2018, 413:120-143.
[12] 方开翔, 尹立国, 江国和. 带限位器浮筏系统冲击响应的伪力法研究[J]. 振动、测试与诊断, 2005, 25(4):272-275.     
FANG Kai-xiang, YIN Li-guo, JIANG Guo-he. Research on Shock Response of Floating Raft System with Displacement Restrictor by Pseudo-Force Method[J]. Journal of Vibration, Measurement and Diagnosis, 2005, 25(4):272-275.
 [13] 张春辉, 汪玉, 吴一红, 等. 双限位器隔离系统的冲击响应计算及参数影响分析[J]. 振动与冲击, 2015, 34(9):125-130.
ZHANG Chun-hui, WANG Yu, WU Yi-hong, et al. Shock response calculation and effects of structural parameters on shock isolation system with double displacement restrictors[J]. Journal of Vibration and Shock,2015, 34(9):125-130.
[14] 闻邦椿, 顾家柳, 夏松波, 等. 高等转子动力学[M]. 北京:机械工业出版社, 2000.
           WEN Bang-chun, GU Jia-liu, XIA Song-bo, et al. Higher Rotor Dynamics[M]. Beijing:Machinery Industry Press, 2000.
[15] ZHAO Wen, LI Ming; XIAO Ling. Nonlinear Dynamic Behaviors of a Marine Rotor-Bearing System Coupled with Air Bag and Floating-Raft[J]. Shock and Vibration,2015, 2015(6):1-18.
[16] 翁雪涛, 蒋学武, 信世堡,等.减振系统的抗冲击性能计算[J].噪声与振动控制, 1999(2):16-18.
WENG Xue-tao, JIANG Xue-wu, XIN Shi-bao, et al. Computation about the shock resistance performance of vibration  reduction  system[J]. Noise and Vibration Control,1999(2):16-18.
[17] 赵应龙, 何琳, 黄映云, 等. 限位器对隔振系统抗冲击性能的影响[J]. 振动与冲击, 2005, 24(2):71-76.
ZHAO Ying-long, HE Lin, HUANG Ying-yun, et al. Influence of the Displacement Restrictor on Shock Resistance Performance of Vibration-isolating System[J]. Journal of Vibration and Shock,2005, 24(2):71-76.

PDF(989 KB)

Accesses

Citation

Detail

段落导航
相关文章

/