以结构动力响应微分求积(DQ)分析方法的基本数值格式为基础,探讨了时步内时间点分别为均匀分布、Chebyshev分布和Chebyshev-Gauss-Lobatto(CGL)分布时该方法的数值稳定性与数值耗散性,并通过等效一阶模型严格推导出方法的代数精度阶数。研究表明,该方法的数值稳定性与时步内时间点分布情况密切相关,不均匀分布格式明显优于均匀分布格式,但体系阻尼比对方法的稳定性具有重大影响;代数精度由离散时间点数决定,一般情况下都能实现比较高的数值精度;两种不均匀时间点分布格式,即Chebyshev格式和CGL格式的DQ分析方法,均具有极佳的数值耗散特性。
Abstract
Based on basic numerical mode of the differential quadrature (DQ) method for dynamic response of structures, the numerical stability and numerical dissipation of DQ method were investigated when time point distributions were uniform distribution, Chebyshev one and Chebyshev-Gauss-Lobatto (CGL) one, respectively within a time step.The algebraic accuracy order number of DQ method was strictly deduced with the equivalent first-order model.The study showed that the method’s numerical stability is closely related to time point distributions within a time step, non-uniform modes are obviously better than uniform ones, but the system damping ratio has large influence on the method’s stability; the method’s algebraic accuracy depends on number of discrete time points, higher numerical accuracy can be realized generally; DQ methods with time points’ two non-uniform distribution modes of Chebyshev distribution and CGL one, respectively have excellent numerical dissipation.
关键词
结构动力响应 /
微分求积 /
数值稳定性 /
代数精度 /
数值耗散性
{{custom_keyword}} /
Key words
dynamic response of structures /
differential quadrature (DQ) /
numerical stability /
algebraic accuracy /
numerical dissipation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NEWMARK N M. A method of computation for structural dynamics [J]. Journal of the Engineering Mechanics Division, ASCE, 1959, 85: 67-94.
[2] WILSON E L, FARHOOMAND I, BATHE K J. Nonlinear dynamic analysis of complex structures [J]. Earthquake Engineering and Structural Dynamics, 1973, 1: 241-252.
[3] CLOUGH R W, PENZIEN J. Dynamics of structures [M]. 2nd edition, New York: McGraw-Hill, Inc., 1993.
[4] BELLMAN R, CASTI J. Differential quadrature and long-term integration [J]. Journal of Mathematical Analysis and Applications, 1971, 34: 235-238.
[5] BELLMAN R, KASHEF B G, CASTI J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations [J]. Journal of Computational Physics, 1972, 10: 40-52.
[6] BERT C W, MALIK M. Differential quadrature method in computational mechanics: a review [J]. Applied Mechanics Reviews, 1996, 49: 1–28.
[7] FUNG T C. Solving initial problems by differential quadrature method——Part 1: first-order equations [J]. International Journal for Numerical Methods in Engineering, 2001, 50: 1411-1427.
[8] FUNG T C. Solving initial problems by differential quadrature method——Part 2: second- and higher-order equations [J]. International Journal for Numerical Methods in Engineering, 2001, 50: 1429-1454.
[9] FUNG T C. Stability and accuracy of differential quadrature method in solving dynamic problems [J]. Computer Methods in Applied Mechanics & Engineering, 2002, 191(13-14): 1311-1331.
[10] C Shu, Q Yao, KS Yeo. Block-marching in time with DQ discretization: an efficient method for time-dependent problems[J]. Computer Methods in Applied Mechanics & Engineering, 2002, 191(41):4587-4597.
[11] J Liu, X Wang. An assessment of the differential quadrature time integration scheme for nonlinear dynamic equations[J]. Journal of Sound & Vibration, 2008, 314(1):246-253.
[12] 李鸿晶, 王通. 结构地震反应分析的逐步微分积分方法[J]. 力学学报, 2011, 43(2): 430-435.
LI Hongjing, WANG Tong. A time-stepping method of seismic response analysis for structures using differential quadrature rule [J]. Chinese Journal of Theoretical and
Applied Mechanics, 2011, 43(2): 430-435.
[13] 李鸿晶, 廖旭, 王通. 结构地震反应DQ解法的两种数值格式[J]. 应用基础与工程科学学报, 2011, 19(5): 758-766.
LI Hongjing, LIAO Xu, WANG Tong. Two numerical schemes of differential quadrature analysis procedure for response of the earthquake-resistant structures [J]. Journal of Basic Science and Engineering, 2011, 19(5): 758-766.
[14] 廖旭, 李鸿晶, 孙广俊. 基于DQ原理的结构弹塑性地震反应分析[J]. 工程力学, 2013, 30(7): 161-166.
LIAO Xu, LI Hongjing, SUN Guangjun. Structural elasto- plastic seismic response analysis by differential quadrature method [J]. Engineering Mechanics, 2013, 30(7): 161-166.
[15] 朱镜清. 论结构动力分析中的数值稳定性[J]. 力学学报, 1983, 19(4): 59-64.
Zhu Jingqing. On numerical stability in the dynamic analysis of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 1983, 19(4): 59-64.
[16] 李小军. 地震工程中动力方程求解的逐步积分方法[J]. 工程力学, 1996, 13(2): 110-118.
Li Xiaojun. Step-by-step integration methods for solving dynamic equations in earthquake engineering[J]. Engineering Mechanics, 1996, 13(2): 110-118.
[17] Hilber H M, Hughes T J R. Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics[J]. Earthquake Engineering & Structural Dynamics, 1978, 6(1):99-117.
[18] 于开平, 邹经湘. 结构动力响应数值算法耗散和超调特性设计[J]. 力学学报, 2005, 37(4): 467-476.
Yu Kaiping, Zou Jingxiang, Two time integral algorithms with numerical dissipation and without overshoot for structural dynamic[J]. Engineering Mechanics, 1996, 13(2): 110-118.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}