基于增量耦合预测控制的风电叶片打磨机械臂末端颤振抑制研究

戴士杰1,2,成俊1,2,张慧博1,2,王小军1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 235-243.

PDF(1677 KB)
PDF(1677 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 235-243.
论文

基于增量耦合预测控制的风电叶片打磨机械臂末端颤振抑制研究

  • 戴士杰1,2,成俊1,2,张慧博1,2,王小军1,2
作者信息 +

Chatter suppression at end of a manipulator for grinding wind turbine blade based on incremental coupling predictive control

  • DAI Shijie1,2, CHENG Jun1,2, ZHANG Huibo1,2, WANG Xiaojun1,2
Author information +
文章历史 +

摘要

针对风电叶片打磨过程中,末端执行器与叶片表面发生刚性接触而引起末端执行器切向颤振问题,提出一种基于力反馈与加速度前馈复合结构的末端执行器增量耦合预测控制方法。在末端执行器柔性驱动单元数学建模的基础上,基于增量耦合动态矩阵预测控制算法对复合PID控制策略进行改进,将不可控但可预知输入加速度作为磨削轴向力预测序列的一部分。同时,在有限时域内采用二次型性能指标最小化的方式对控制目标进行滚动优化,以确保末端执行器与风电叶片表面柔顺接触。仿真及实验结果表明,此方法可以快速地实现末端执行器的切向颤振抑制,并能最大限度地减小因控制时滞、环境时变、模型失配等带来的误差。

Abstract

Aiming at the problem of end-actuator tangential chatter caused by rigid contact between end-actuator and blade surface in process of grinding wind turbine blade, an incremental coupling predictive control method for the end-actuator based on the composite structure of force feedback and acceleration feedforward was proposed.On the basis of mathematical modeling for flexible driving unit of the end-effector, the composite PID control strategy was improved based on incremental coupling dynamic matrix predictive control algorithm.The uncontrollable but predictable input acceleration was taken as a part of prediction sequence of grinding axial force.Meanwhile, the control target was optimized by rolling in finite time domain with minimizing quadratic performance index to ensure flexible contact between end-actuator and wind turbine blade.Simulation and test results showed that the proposed method can quickly realize the end-effector’s tangential chatter suppression, and minimize errors brought by control time delay, environmental time-varying and model mismatch, etc.

关键词

颤振抑制 / 增量耦合 / 动态矩阵 / 预测控制 / 复合PID控制

Key words

chatter suppression / incremental coupling / dynamic matrix / predictive control / composite PID control

引用本文

导出引用
戴士杰1,2,成俊1,2,张慧博1,2,王小军1,2. 基于增量耦合预测控制的风电叶片打磨机械臂末端颤振抑制研究[J]. 振动与冲击, 2020, 39(5): 235-243
DAI Shijie1,2, CHENG Jun1,2, ZHANG Huibo1,2, WANG Xiaojun1,2 . Chatter suppression at end of a manipulator for grinding wind turbine blade based on incremental coupling predictive control[J]. Journal of Vibration and Shock, 2020, 39(5): 235-243

参考文献

[1] 李伯民, 赵波, 李清. 磨削加工中的振动[M]. 北京: 化学工业出版社, 2010.
[2]  Otto A, Radons G. The influence of tangential and torsional vibrations on the stability lobes in metal cutting[J]. Nonlinear Dynamics, 2015, 82(4): 1-12.
[3]  Yan Y, Xu J, Wang W. Nonlinear chatter with large amplitude in a cylindrical plunge grinding process[J]. Nonlinear Dynamics, 2012, 69(4): 1781-1793.
[4] 王战玺, 张晓宇, 李飞飞, 等. 机器人加工系统及其切削颤振问题研究进展[J]. 振动与冲击, 2017, 36(14): 147-155+188.
WANG Zhanxi, ZHANG Xiaoyu, LI Feifei, et al. Review on the research developments of robot machining systems and cutting chatter behaviors[J]. Journal of Vibration and Shock, 2017, 36(14): 147-155+188.
[5] Zhang S, Huang D. End-point regulation and vibration suppression of a flexible robotic manipulator[J]. Asian Journal of Control, 2017, 19(1): 245-254.
[6] Dubay R, Hassan M, Li C, et al. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator[J]. ISA Transactions, 2014, 53(5): 1609-1619.
[7]  Abe A. Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation[J]. Mechanism & Machine Theory, 2009, 44(9): 1627-1639.
[8] 徐文福, 徐超, 孟得山. 基于粒子群优化的刚柔混合机械臂振动抑制规划[J]. 控制与决策, 2014, 29(4): 632-638.
XU Wen-fu, XU Chao, MENG De-shan. Trajectory planning of vibration suppression for rigid-flexible hybrid manipulator based on PSO algorithm[J]. Control and Decision, 2014, 29(4): 632-638.
[9] Rahimi H N, Nazemizadeh M. Dynamic analysis and intelligent control techniques for flexible manipulators: a review[J]. Advanced Robotics, 2014, 28(2): 63-76.
[10] Zhang S Q, Li H N, Schmidt R, et al. Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures[J]. Journal of Sound and Vibration, 2014, 333(5): 1209-1223.
[11] S Yue. Weak-vibration configurations for flexible robot manipulators with kinematic redundancy[J]. Mechanism and Machine Theory, 2000, 35(2): 165-178.
[12] 梁捷, 陈力. 关节柔性的漂浮基空间机器人基于奇异摄动法的轨迹跟踪非奇异模糊Terminal滑模控制及柔性振动抑制[J]. 振动与冲击, 2013, 32(23): 6-12.
LIANG Jie, CHEN Li. Nonsingular fuzzy terminal sliding mode control and elastic vibration suppressing of a free-floating space robot with flexible joints based on trajectory tracking of the singular perturbation method[J]. Journal of Vibration and Shock, 2013, 32(23): 6-12.
[13] Ming Y, Qiu J, Ji H, et al. Active control of vibration using collocated negative acceleration feedback strategy[J]. Journal of Vibration Measurement & Diagnosis, 2014, 34(2): 254-260.
[14] 颜秉勇, 田作华, 施颂椒, 等. 基于故障跟踪估计器的非线性时滞系统故障诊断[J]. 控制与决策, 2009, 24(1): 133-136.
YAN Bing-yong, TIAN Zuo-hua, SHI Song-jiao, et al. Fault diagnosis for nonlinear time-delay systems based on fault tracking approximator[J]. Control and Decision, 2009, 24(1): 133-136.

PDF(1677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/