色关联的乘性与加性噪声驱动下的幂函数型单势阱系统的稳态特征

吴绍祥,罗阳,陈建

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 244-249.

PDF(1208 KB)
PDF(1208 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 244-249.
论文

色关联的乘性与加性噪声驱动下的幂函数型单势阱系统的稳态特征

  • 吴绍祥,罗阳,陈建
作者信息 +

Steady-state features of a power function type single-well system driven by color-associated multiplicative and additive noise

  • WU Shaoxiang,  LUO Yang,  CHEN Jian
Author information +
文章历史 +

摘要

研究了色关联的乘性与加性噪声作用下幂函数型单势阱系统的稳态问题。首先利用一致有色噪声近似方法,推导得到稳态概率密度函数(仅以b=1为例),分析色关联的乘性与加性噪声对于稳态概率密度的影响,并通过势阱结构参数分析了势阱的结构对于稳态概率密度的影响。结果表明:参数b=1条件下的互相关强度、自相关时间以及势阱结构参数a,b都会诱导非平衡相变。

Abstract

Steady-state problems of a power function type single-well system under action of color-associated multiplicative and additive noise were studied.Firstly, the uniform colored noise approximate method was used to deduce the steady-state probability density function.Then, effects of color-associated multiplicative and additive noise on the steady-state probability density were analyzed.Finally, structural parameters of a potential well were used to analyze effects of the well structure on the steady-state probability density.The results showed that under the condition of the parameter b=1, cross-correlation intensity, self-correlation time and structure parameters a, b of the potential well can induce non-equilibrium phase transitions.

关键词

单势阱系统 / 乘性噪声 / 加性噪声 / 稳态概率密度函数

Key words

single well system / multiplicative noise / additive noise / steady-state probability density function

引用本文

导出引用
吴绍祥,罗阳,陈建. 色关联的乘性与加性噪声驱动下的幂函数型单势阱系统的稳态特征[J]. 振动与冲击, 2020, 39(5): 244-249
WU Shaoxiang, LUO Yang, CHEN Jian. Steady-state features of a power function type single-well system driven by color-associated multiplicative and additive noise[J]. Journal of Vibration and Shock, 2020, 39(5): 244-249

参考文献

[1]胡岗.随机力与非线性系统[M].上海:上海科技教育出版社,1994:150-156.
[2]杨亚强,王参军.双色噪声激励下FHN神经元系统的稳态性质[J].物理学报.2012,61(12):120507.
Yang Ya-Qiang,Wang Can-Jun. Steady state charac-teristics in FHN neural system driven by correlated non-Gaussian noise and Gaussian noise[J].Acta Physica Sinica,2012,61(12):120507.
[3]Luo Xue-Qin, Wu Dan, Zhu Shi-Qun. Stochastic resonance in a time-delayed bistable system with col-ored coupling between noise terms[J].International Journal of Modern Physics B, 2012, 26 (30):1250149.
[4]Wu Da-Jin,Cao Li.Bistable kinetic model driven by correlated noises:Steady-state nan lysis[J].Physical Review E, 1994, 50 (4):2496.
[5]靳艳飞,徐伟,李伟,马少娟.色关联的色噪声驱动的双稳杜芬模型的稳态分析[J].动力学与控制学报.2005,3(2):60-65.
Jin Yan-Fei,Xu Wei,Li Wei,Ma Shao-Juan.Steady-state analysis of a bistable duff ing model driven by additive and multiplicative colored noises with a colored correlated noise.Journal of Dynamics and Control[J].2005.3(2).60-65.
[6]Wu Dan, Luo Xue-Qin, Zhu Shi-Qun. Fluctuations of Single-Mode Laser Driven by Two Different Kinds of Colored Noise[J].Communications in Theoretical in theoretical Physics 2006,45(4):630-636.
[7]时培明,李培,韩东颖.色关联乘性与加性色噪声驱动的多稳态系统的稳态特征[J].物理学报,2014,63(17):170504.
Shi Pei-Ming, Li-Pei,Han Dong-Ying, Steady-state analysis of a tristable system driven by a correlated multiplicative and an additive colored noises[J]. Acta  Physica  Sinica,2014,63(17):170504.
[8]Yao Ming-Li,Xu Wei,Ning Li-Juan.Stochastic resonance in a bias monostable system driven by a periodic rectangular signal and uncorrelated nois-es[J].Nonlinear Dynamics, 2012, Vol.67(1):329-333.
[9]靳艳飞,李贝.色关联的乘性与加性噪声激励下分段非线性模型的随机共振[J].物理学报,2014,63(21):210501.
Jin Yan-Fei ,Li Bei. Stochastic resonance in a piece-wise nonlinear system driven by colored correlated additive and multiplicative colored noises[J]. Acta Physica Sinica,2014,63(21):210501.
[10]Liang Gui-Yun,Cao Li,Wu Da-Jin,Moments of intensity of single-mode laser driven by additive and multiplicative colored noises with colored cross-correlation[J].Physics Letters A,2002,294(3):190-198. 
[11]Benzi R, Sutera A, Vulpiani A.The mechanism of stochastic[J].Journal of Physics A:Mathematical and General,1981,14:453-457.
[12] Benzi R ,Parisi G, Vulpiani A.Stochastic reso-nance in climate change[J],Tel lus,1982,34,10-16.
[13]冷永刚,王太勇.二次采样用于随机共振从强噪声中提取微弱信号的数值研究[J].物理学报.2003,52(10):2432-2437.
Leng Yong-Gang,Wang Tai-Yong.Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy noise[J]. Acta Physica  Sinica,2003,52(10):2432-2437.
[14]Lu Si-Liang,He Qing-Bo,Zhang Hai-Bin,etal. Rotating machine fault diagnosis through enhanced stochastic resonance by full-wave signal construc-tion[J].Mechanical Syetems and Signal Pro-cessing.2016,85(2017):82-97.
[15]Qiao Zi-jian,Lei Ya-Guo,Lin Jing, etal. Stochastic resonance subject to multipli cative and additive noise: The influence of potential asymmetries[J].Physical Review E,2016,94(5):052214.
[16]赖志慧,冷永刚.三稳态的动态响应及随共振[J].物理学报,2015,64(20):200503.
Lai Zhi-hui,Long Yong-gang. Dynamic response and stochastic resonance of a tri-stable system[J]. Acta
Physica Sinica,2015,64(20):200503.
[17]季袁冬,张路,罗懋康.幂函数型单势阱随机振动系统的广义随机共振[J].物理学报,2014,63(16):164302.
Ji Yuan-Dong,Zhang-Lu,Luo Mao-Kang. Generalized stochastic resonance of power function type single-well system[J]. Acta Physica Sinica, 2014, 63(16): 164302..
[18]张刚,胡韬,张天骐.Levy噪声激励下的幂函数型单稳随机共振特性分析[J].物理学报,2015,64(22):220502.
 Zhang Gang,Hu Tao,Zhang Tian-Qi. Characteristic analysis of power function type monostable stochastic resonance with Levy noise. Acta Physica Sinica, 2015, 64(22):0220502.
[19]Jung P,Hanggi P.Dynamical system:A unified colored-noise approximation[J].Physical Review A,1987,35(10):4464-4466.
[20]Gilbarg D,Trudinger N.Elliptic Partial Differential Equations of Second Or-der(M).Berlin:Springer,2001.149-152.
[21]SanchoJ.M,Miguel.M.S,Katz.S.L,Gunton.J.D.Analytical and numerical studies of multiplicative noise[J]. Physical Review A,1982,26(3):1589-1609.
[22]Novikov E A. Functionals and the Random-Force Method in Turbulence Theory[J]. Soviet Journal of Experimental & Theoretical Physics, 1965, 20:1919-1926.
[23]Fox R F. Uniform convergence to an effective Fokker-Planck equation for weakly colored noise[J]. Physical Review A, 1986, 34(5):4525-4527.
[24]Risken.H. The Fokker-Planck Equation(methods of Solution and Applica-tions)(M).Berlin:Springer,1984.49-50.
[25]Jeffrey.A, Zwillinger.D. Table of Integrals Series and Products(M).Berlin:Springer,2007.63-81.

PDF(1208 KB)

Accesses

Citation

Detail

段落导航
相关文章

/