中低频集中质量悬臂式簧片仪基频分析方法研究

惠安民1,闫明1,冯麟涵2,姜丽杰1,刘海超1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 272-277.

PDF(1219 KB)
PDF(1219 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 272-277.
论文

中低频集中质量悬臂式簧片仪基频分析方法研究

  • 惠安民1,闫明1,冯麟涵2,姜丽杰1,刘海超1
作者信息 +

Fundamental frequency analysis method for medium-low frequency concentrated mass cantilever reed instrument

  • HUI Anmin1,  YAN Ming1,  FENG Linhan2,JIANG Lijie1, LIU Haochao1
Author information +
文章历史 +

摘要

簧片仪是一种中低频冲击响应谱测量装置,设计时可将其简化为端部附带集中质量的悬臂梁。簧片仪的振型方程中存在超越函数,对于等截面簧片仪来说,可使用二分法等数值方法求解,计算量较大,该方法不适用于复杂截面簧片仪基频设计。首先利用悬臂梁自由端受集中力的挠度公式,推导出其等效刚度等效单自由度的弹簧振子系统,利用弹簧振子相关频率公式解决求解集中质量等截面悬臂梁的基频问题,该方法与振型方程求解的基频对比,发现在10 Hz以下的中低频区域,可以很好的保证等截面悬臂梁的基频精度,大于10 Hz的中频段,误差随频率的升高而迅速增大。接下来,通过Mohr积分的方法,推导出等强度集中质量悬臂梁自由端的最大挠度,并给出其基频的设计公式,该方法与试验进行对比,发现误差与等截面悬臂梁有相同趋势,因此利用瑞利能量法修正设计公式中的质量参数,修正后与实验误差在5%左右。经理论与试验验证,所提出的簧片仪设计方法简单可行、计算结果可信。

Abstract

Reed instrument is a measuring device for medium-low frequency impact response spectra.It can be simplified as a cantilever beam with concentrated mass at its free end during its design.There is a transcendental function in its vibration mode shape equation.For a reed instrument with uniform cross-section, this equation can be solved with the bisection method, but the numerical computation is time-consuming.This method is not suitable for fundamental frequency design of reed instruments with complex cross-section.Here, firstly, the deflection formula for a cantilever beam subjected to a concentrated force at its free end was used to derive the equivalent stiffness of a single-DOF spring-mass system equivalent to the beam.The relevant natural frequency formula of this single-DOF spring-mass system was proposed to solve the fundamental frequency problem for a uniform cross-section cantilever beam with a concentrated mass.Comparing the beam’s fundamental frequency calculated using the proposed method with that using the vibration mode shape equation, it was found that within the medium-low frequency range of less than 10 Hz, the fundamental frequency accuracy of the cantilever beam with uniform cross-section can be well kept; within the medium frequency range of larger than 10 Hz, error rapidly increases with increase in frequency; Mohr integral method was used to deduce the maximum deflection at free end of a uniform strength concentrated mass cantilever beam, and give the design formula of its fundamental frequency.Comparing its fundamental frequency data calculated with the proposed method to test data, it was found that the error has the same trend as that of the cantilever beam with uniform cross-section; Rayleigh energy method is used to modify mass parameters in the design formula, and the error between the modified data and test ones is about 5%.Through theoretical calculation and test verification, it was shown that the proposed design method for a reed instrument’s fundamental frequency is simple and feasible, and the computation results are believable.

关键词

簧片仪 / 等强度集中质量悬臂梁 / 基频 / Mohr积分

Key words

reed instrument / uniform strength concentrated mass cantilever beam / fundamental frequency / Mohr integral

引用本文

导出引用
惠安民1,闫明1,冯麟涵2,姜丽杰1,刘海超1. 中低频集中质量悬臂式簧片仪基频分析方法研究[J]. 振动与冲击, 2020, 39(5): 272-277
HUI Anmin1, YAN Ming1, FENG Linhan2,JIANG Lijie1, LIU Haochao1. Fundamental frequency analysis method for medium-low frequency concentrated mass cantilever reed instrument[J]. Journal of Vibration and Shock, 2020, 39(5): 272-277

参考文献

[1] Scavuzzo R J,Pusey H C. Naval Shock Analysis and   Design[M]. Falls Church: The Shock and Vibration Information Analysis Center, 2000.
[2] 傅 健,孟丽丽,赵鹏铎,等. 低频簧片仪冲击特性与破坏规律分析[J]. 噪声与振动控制,2016,36(02):205-208.
FU Jian,MENG Li-li,ZHAO Peng-duo,et al.Analysis of Shock Characteristics and Failure Law for Low-frequency Reed Gage [J].Noise and vibration control,2016,36(02):205-208.
[3] 耿盼盼,刘永文. 舰用燃气轮机抗冲击时域模拟研究[J]. 机械强度,2013,35(03):349-353.
GENG Pan-pan,LIU Yong-an.Time domain simulation study on shock resistance of marine gas turbine[J].Mechanical strength,2013,35(03):349-353.
[4] 任晨辉,杨德庆. 船用新型多层负刚度冲击隔离器性能分析[J]. 振动与冲击,2018, 37(20): 81-87.
Ren Chenhui, Yang Deqing. Performance Analysis of a New Marine Multi - layer Negative Stiffness Shock Isolator [ J ]. Journal of vibration and shock, 2018, 37 ( 20 ): 81 - 87.
[5] 吴祖堂,杨德猛,邹虹. 压电加速度传感器冲击测量中低失真的理论分析与试验验证[J].传感技术学报,2010,23(11):1586-1589.
WU Zhu-tang,YANG De-meng,ZOU Hong.Theoretical analysis and experimental verification of low distortion in impact measurement of piezoelectric acceleration sensor[J]. Journal of sensing technology, 2010, 23(11): 1586-1589.
[6] 曾泽璀,闫明,赵鹏铎,等. 中低频冲击响应谱测量技术综述[J].造船技术,2016(04):30-33+41.
ZENG Ze-cui,YAN Ming,ZHAO Peng-duo,et al.Summary of low and medium frequency shock response spectrum measurement technology[J]. Shipbuilding technology, 2016(04): 30-33+41.
[7] 方诗麟,卢梅,李铁. 基于冲击响应谱的导弹冲击试验条件制定与优化方法研究[J]. 振动与冲击,2018, 37(1): 203-207.
Fang Shilin,Li Tie,Lu Mei. Institution and optimization of the percussion experiment condition of missiles based on the shock response spectrum. Journal of vibration and shock, 2018, 37(1): 203-207.
[8] Smallwood D O. Shock response spectrum at low Frequencie [J]. The Shock and Vibration Bulletin, SAVIAC, 1986, 1: 279-288.
[9] 杜志鹏,汪玉,杨洋,等. 舰艇水下爆炸冲击信号拟合及应用[J]. 振动与冲击,2010,03:182-184+213.
DU Zi-peng,WANG Yu,YANG Yang,et al.Fitting and application of underwater explosion impactsignal of warship[J].Journal of vibration and shock,2010,03:182-184+213.
[10] Irvine T. An introduction to the shock response spectrum[J]. Rev P, Vibrationdata, 2002.
[11] Gaberson H A. Pseudo velocity shock spectrum rules for analysis of mechanical shock[J]. IMAC XXV, Orlando, FL, 2007.
[12] 王栋.附带有考虑集中质量的转动惯性的梁固有振动分析[J].振动与冲击,2010,29(11):221-225+264.
WANG Dong.Natural vibration analysis of beams with rotational inertia considering concentrated mass[J].Journal of vibration and shock,2010,29(11):221-225+264.
[13] 任兴民,秦卫阳,文立华. 工程振动基础[M]. 北京:机械工业出版社,2006.
REN Xing-min,QIN Wei-yang,WEN Li-hua.Engineering vibration foundation[M].Beijing:Machinery industry press, 2006.
[14] 刘建英,王效岳,宫金良. 考虑不同边界条件悬臂梁的模态研究[J].振动与冲击,2017,36(19):221-226+241.
LIU Jianying, WANG Xiaoyue, GONG Jinliang.Modal analysis of cantilever beams considering different boundary conditions[J].Journal of vibration and shock, 2017,36(19): 221-226+241.
[15] Zhuang Wang,Ming Hong,Junchen Xu,et al.Analytical and experimental study of free vibration of beams carrying multiple masses and springs[J].Journal of Marine Science and Application, 2014,13 (1): 32-40.

PDF(1219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/