大力矩径向驻波型超声波电机有限元分析与实验研究

蒋春容1,周良志1,董晓霄2,陆旦宏1,金龙2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 57-62.

PDF(1426 KB)
PDF(1426 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 57-62.
论文

大力矩径向驻波型超声波电机有限元分析与实验研究

  • 蒋春容1,周良志1,董晓霄2,陆旦宏1,金龙2
作者信息 +

Finite element analysis and tests for a high torque radial standing wave type ultrasonic motor

  • JIANG Chunrong1,  ZHOU Liangzhi1,  DONG Xiaoxiao2,  LU Danhong1,  JIN Long2
Author information +
文章历史 +

摘要

提出了一种大力矩径向驻波型超声波电机,在实现电机大力矩输出的同时保持结构紧凑的特点。首先设计并分析了电机的结构和工作原理,采用有限元法分析了电机定子的振动特性。接着制作了超声波电机样机,样机直径为32 mm。采用激光测振仪测量了定子的共振频率及径向振动的振幅,测量结果与理论分析结果相吻合。最后,搭建了电机输出特性测试平台,测量了电机在不同电压下的转矩-转速特性。实验测试结果显示,定子工作模态的共振频率为73.3 kHz,当施加的电压幅值为100 V、频率为74 kHz时,电机的空载转速为45 r/min,堵转力矩达到0.41 N?m。与其他同尺寸的超声波电机相比,所提出的径向驻波型超声波电机具有更大的堵转力矩。

Abstract

A high torque radial standing wave type ultrasonic motor was proposed to realize large torque output and keep compact structure feature.Firstly, the motor structure was designed and its working principle was analyzed.The finite element method was used to analyze its stator vibration characteristics.Then a motor prototype with diameter of 32 mm was fabricated.Its stator’s resonance frequency and radial vibration amplitude were measured with a laser vibrometer.The measurement results agreed well with theoretical analysis ones.Finally, a test platform for measuring the motor’s output characteristics was constructed and torque-speed characteristics of the motor under different voltages were measured.The results showed that the resonance frequency of the stator working mode is 73.3 kHz; when applied voltage amplitude is 100 V with frequency of 74 kHz, the motor’s no-load speed is 45 r/min, and its blocking torque reaches 0.41 N-m; compared to other ultrasonic motors with the same sizes, the proposed motor has a larger blocking torque.

关键词

大力矩 / 径向驻波 / 超声波电机 / 振动特性 / 转矩-转速特性

Key words

high torque / radial standing wave / ultrasonic motor / vibration characteristics / torque-speed characteristics

引用本文

导出引用
蒋春容1,周良志1,董晓霄2,陆旦宏1,金龙2. 大力矩径向驻波型超声波电机有限元分析与实验研究[J]. 振动与冲击, 2020, 39(5): 57-62
JIANG Chunrong1, ZHOU Liangzhi1, DONG Xiaoxiao2, LU Danhong1, JIN Long2. Finite element analysis and tests for a high torque radial standing wave type ultrasonic motor[J]. Journal of Vibration and Shock, 2020, 39(5): 57-62

参考文献

[1] 曲建俊, 李锦棒. 基于电接触法的行波超声电机接触特性研究[J]. 声学学报, 2015, 40(5): 625-630.
QU Jianjun, LI Jinbang. Contact characteristics of a traveling wave ultrasonic motor based on an electric contact method[J]. Acta Acustica, 2015, 40(5): 625-630.
[2] Renteria Marquez I A, Bolborici V. A dynamic model of the piezoelectric traveling wave rotary ultrasonic motor stator with the finite volume method[J]. Ultrasonics, 2017, 77: 69-78.
[3] 陈强, 徐志科, 蒋春容, 等. 双足驱动双压电晶片直线超声波电机运行机理研究[J]. 振动与冲击, 2014, 33(22): 21-25.
CHEN Qiang, XU Zhike, JIANG Chunrong, et al. Operation mechanism of linear ultrasonic motor installed with bimorphs and double-driving feet[J]. Journal of Vibration and Shock, 2014, 33(22): 21-25.
[4] 傅平, 胡锡幸, 郭吉丰. 二自由度行波型超声波电机的轨迹控制[J]. 振动与冲击, 2014, 33(18):84-89, 101.
FU Ping, HU Xixing, GUO Jifeng. Trajectory control of a 2-DOF traveling wave type spherical ultrasonic motor[J]. Journal of Vibration and Shock, 2014, 33(18):84-89, 101.
[5] 王光庆, 徐文潭, 杨斌强. T型直线超声波电动机的运行机理及其特性分析[J]. 电工技术学报, 2017, 32(15): 111-119.
WANG Guangqing, XU Wentan, YANG Binqiang. Operating mechanism and characteristics analysis of a T-shaped linear ultrasonic motor[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 111-119.
[6] 王光庆, 岳玉秋, 展永政. 纵-弯复合旋转式超声波电动机的优化设计与性能分析[J]. 电工技术学报, 2015, 30(22): 33-41.
WANG Guangqing, YUE Yuqiu, ZHAN Yongzheng. Optimum design and performances analysis of the longitudinal-bending hybrid rotating type ultrasonic motor[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 33-41.
[7] Oh J H, Yuk H S, Lim K J. Design of a novel type ultrasonic motor for high torque generation[J]. Journal of Electroceramics, 2013, 30(1-2): 113-117.
[8] Chen Y, Liu Q L, Zhou T Y. A traveling wave ultrasonic motor of high torque[J]. Ultrasonics, 2006, 44(Suppl.): e581-e584.
[9] Guilleus Q, Leroy E, Eck L, et al. A compact design for ultrasonic piezoelectric motor with embedded strain wave reducer for high torque applications[C]. IEEE International Ultrasonics Symposium, Washington D. C., USA, 2017.
[10] Liu Y, Chen W, Liu J, et al. A high-power linear ultrasonic motor using longitudinal vibration transducers with single foot[J]. IEEE Transactions on Ultrasonics, Ferroelectics, and Frequency Control, 2010, 57(8): 1860-1867.
[11] Liu Y, Chen W, Liu J, et al. A high-power linear ultrasonic motor using bending vibration transducer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 5160-5166.
[12] 石胜君, 陈维山, 刘军考, 等. 大推力推挽纵振弯振复合直线超声电机[J]. 中国电机工程学报, 2010, 30(9): 55-61.
SHI Shengjun, CHEN Weishan, LIU Junkao, et al. A high power ultrasonic linear motor using push-pull longitudinal and bending multimode transducer[J]. Proceedings of the CSEE, 2010, 30(9): 55-61.
[13] Iula A, Pappalardo M. A high-power Traveling wave ultrasonic motor[J]. IEEE Transactions on Ultrasonics, Ferroelectics, and Frequency Control, 2006, 53(7): 1344-1351.
[14] Iula A, Bollino G, Corbo A, et al. FE analysis and experimental characterization of a high torque travelling wave ultrasonic motor[C]. IEEE International Ultrasonics Symposium, Beijing, China, 2008: 635-638.
[15] Iula A, Corbo A, Pappalardo M. FE analysis and experimental evaluation of the performance of a travelling wave rotary motor driven by high power ultrasonic transducers[J]. Sensors and Actuators A: Physical, 2010, 160(1-2): 94-100.
[16] Suzuki A, Izumi K, Tsujino J. Novel screw-shaped ultrasonic motor to obtain high torque[C]. IEEE International Ultrasonics Symposium, Rome, Italy, 2009.
[17] Shinsei Corporation. Ultrasonic Standard Motor[EB/OL]. http://www.shinsei-motor.com/English/product/index.html, 2007.
[18] 苏鹤玲, 赵淳生. 单相旋转型驻波超声电机的数学模型及仿真[J]. 应用力学学报, 2003, 20(2): 78-82.
SU Heling, ZHAO Chunsheng. Study on the dynamic modeling and simulation of a rotatory type ultrasonic motor with single phase driving circuit using standing wave[J]. Chinese Journal of Applied Mechanics, 2003, 20(2): 78-82.
[19] Liu Y, Chen W, Liu J, et al. A cylindrical standing wave ultrasonic motor using bending vibration transducer[J]. Ultrasonics, 2011, 51(5): 527-531.

PDF(1426 KB)

Accesses

Citation

Detail

段落导航
相关文章

/