基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究

曹继平1,王赛1,2,岳小丹2,雷宁1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 97-104.

PDF(2854 KB)
PDF(2854 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (5) : 97-104.
论文

基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究

  • 曹继平1,王赛1,2,岳小丹2,雷宁1
作者信息 +

Rolling bearing fault diagnosis of launch vehicle based on adaptive deep CNN

  • CAO Jiping1,  WANG Sai1,2,  YUE Xiaodan2,  LEI Ning1
Author information +
文章历史 +

摘要

作为发射车的关键组成部件,滚动轴承的工作环境复杂,故障诊断困难。提出一种自适应深度卷积神经网络,针对传统CNN诊断方法存在的计算效率较低、参数调试需人工经验指导等问题,采用粒子群优化算法确定CNN模型结构和参数,应用主成分分析法将故障诊断特征学习过程可视化,评估其特征学习能力。将提出方法应用于发射车滚动轴承故障诊断,对比标准CNN、SVM、ANN诊断方法,10种工况的诊断结果表明,提出方法诊断精度高且鲁棒性好。

Abstract

As key components of launching vehicle, rolling bearings’ working conditions usually are very complex to make their fault diagnosis be difficult.Here, in order to effectively perform rolling bearing fault diagnosis, a novel method called the adaptive deep convolutional neural network (CNN) was proposed.Aiming at problems of lower calculation efficiency and parametric adjusting needing manual experience existing in the traditional CNN diagnosis method, PSO algorithm was used to determine structure and parameters of a CNN model.The principal component analysis (PCA) method was used to visualize its fault diagnosis feature learning process, and evaluate its feature learning ability.The diagnosis results with several diagnosis methods, respectively under 10 different bearing working conditions showed that compared with standard CNN, SVM and ANN diagnosis methods, the proposed method has higher diagnosis accuracy and better robustness.

关键词

故障诊断 / 卷积神经网络 / 粒子群优化 / 发射车 / 滚动轴承 / 特征学习

Key words

fault diagnosis / convolutional neural network (CNN) / particle swarm optimization (PSO) / launch vehicle / rolling bearing / feature learning

引用本文

导出引用
曹继平1,王赛1,2,岳小丹2,雷宁1. 基于自适应深度卷积神经网络的发射车滚动轴承故障诊断研究[J]. 振动与冲击, 2020, 39(5): 97-104
CAO Jiping1, WANG Sai1,2, YUE Xiaodan2, LEI Ning1. Rolling bearing fault diagnosis of launch vehicle based on adaptive deep CNN[J]. Journal of Vibration and Shock, 2020, 39(5): 97-104

参考文献

[1] Miao Q, Cong L and Pecht M. Identification of multiple characteristic components with high accuracy and resolution using the zoom interpolated discrete Fourier transform[J]. Measurement Science and Technology, 2011, 22(5): 701-712.
[2] Wu J D, Bai M R and Su F C. An expert system for the diagnosis of faults in rotating machinery using adaptive order-tracking algorithm[J]. Expert Systems with Applications, 2009, 36(3): 5424-5431.
[3] Utkin L V and Zhuk Y A. Robust boosting classification models with local sets of probability distributions[J]. Knowledge-Based Systems, 2014, 61: 59-75.
[4] Abellán J and Masegosa A R. Bagging schemes on the presence of class noise in classification[J]. Expert Systems with Applications, 2012, 39(8): 6827-6837.
[5] Hajnayeb A, Ghasemloonia A and Khadem S E. Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis[J]. Expert Systems with Applications, 2011, 38(8): 10205-10209.
[6] Hao R J, Peng Z K, Feng Z, et al. Application of support vector machine based on pattern spectrum entropy in fault diagnostics of rolling element bearings[J]. Measurement Science and Technology, 2011, 22(4): 708-715.
[7] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural network[J]. Communications of the ACM, 2012, 60(2): 2012.
[9] Liu N, Kan J M. Improved deep belief networks and multi-feature fusion for leaf identification[J]. Neurocomputing, 2016, 216: 86-701.
[10] Gan M, Wang C and Zhu C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2016, 73: 92–104.
[11] Shao H, Jiang H, Wang F, et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2016,119:200-220.
[12] Zhang W, Li C, Peng G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2018, 100:439-453.
[13] Shao H, Jiang H, Zhang H, et al. Rolling bearing fault feature learning using improved convolutional deeo belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100:743-765.
[14] 卢官明,何嘉利,闫静杰等. 一种用于人脸表情识别的卷积神经网络[J]. 南京邮电大学学报:自然科学版,2016, 36(1): 16-22.
LU Guan-ming, HE Jia-li, YAN Jing-jie, et al. A convolutional neural network for facial expression recognition[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2016, 36(1): 16-22.
[15] 雷亚国,贾峰,周昕,等.基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.
LEI Ya-guo, JIA Feng, ZHOU Xin, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56.
[16] Olivier J, Viktor S, Bram V, et al. Convolutional Neural Network Based Fault Detection for Rotating Machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345.
[17] Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2013, 35: 221-231.
[18] He K, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2015, 37: 1904-1916.
[19] Yang W X, Jin L W, Tao D C, et al. Drop Sample: A new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition[J]. Pattern Recognition, 2016, 58: 190-203.
[20] Shen W, Zhou M, Yang F, et al. Multi-crop Convolutional Neural Network s for lung nodule malignancy suspiciousness classification[J]. Pattern Recognition, 2017, 61: 663-673.
[21] Earnest P I and Chalavadi K M. Hybrid deep neural network model for human action recognition[J]. Applied Soft Computing, 2016, 46: 936-952.
[22] Zhang B, Xu C L and Wang S M. An inverse method for flue gas shielded metal surface temperature measurement based on infrared radiation[J]. Measurement Science and Technology, 2016, 27: 74-84.
[23] Zhang E, Hou L, Shen C, et al. Sound quality prediction of vehicle interior noise and mathematical modeling using a back propagation neural network(BPNN) based on particle swarm optimization(PSO)[J]. Measurement Science and Technology, 2016, 27: 158174.
[24] 唐国维,赵雪. 基于粒子群算法的油品调和调度优化研究[J]. 长江大学学报:自然科学版,2011, 08(1): 89-91.
TANG Guo-wei, ZHAO Xue. Optimization of oil blending scheduling based on particle swarm optimization algorithm[J]. Journal of Yangtze University: Natural Science, 2011, 08(1): 89-91.
[25] 朱志莹,孙玉坤. 基于粒子群优化支持向量机的磁轴承转子位移预测建模[J]. 中国机电工程学报,2012, 32(33): 118-123.
ZHU Zhi-ying, SUN Yu-kun. Predictive modeling of magnetic bearing rotor displacement based on particle swarm optimization support vector machine[J]. Chinese Journal of mechanical and electrical engineering, 2012, 32(33): 118-123.

PDF(2854 KB)

1673

Accesses

0

Citation

Detail

段落导航
相关文章

/