基于Kalman-GARCH模型的结构损伤识别

周建庭1,2,李晓庆1,辛景舟1,2,阳珊清1,周应新3,4

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 1-7.

PDF(1874 KB)
PDF(1874 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 1-7.
论文

基于Kalman-GARCH模型的结构损伤识别

  • 周建庭1,2,李晓庆1,辛景舟1,2,阳珊清1,周应新3,4
作者信息 +

Structural damage identification based on a Kalman-GARCH model

  • ZHOU Jianting1,2,LI Xiaoqing1,XIN Jingzhou1,2,YANG Shanqing1,ZHOU Yingxin3,4
Author information +
文章历史 +

摘要

基于监测数据的结构损伤识别,是桥梁健康监测系统发挥感知预警效益的重要基础。为进一步提高结构损伤识别精度,提出一种融合Kalman滤波与广义自回归条件异方差(GARCH)模型的结构损伤识别方法。采用Kalman滤波对加速度时程数据进行降噪处理,在此基础上,建立了线性递归AR模型,对结构损伤进行识别;引入非线性递归GARCH模型,进一步提高识别精度;利用加速锈蚀损伤钢筋混凝土梁动力试验获取的加速度时程数据,对算法的有效性进行验证。结果表明:以损伤前后时间序列模型残差方差比为特征指标,能够有效识别结构损伤;与Kalman-AR模型相比,Kalman-GARCH模型能够解释部分非线性特征,弥补AR模型忽略数据异方差性所带来的识别误差,识别精度提高了14.2%。该方法可为基于海量数据的桥梁结构状态感知提供一种新的思路。

Abstract

The structural damage identification based on monitoring data plays a fundamental role in the bridge health monitoring system to exert the benefit of perception and early warning.To further improve the accuracy of structural damage identification, a new method was proposed which integrates the Kalman filtering and generalized autoregressive conditional heteroskedasticity (GARCH) model.First, the Kalman filter was used to de-noise the raw acceleration data, and a linear recursive autoregressive model (AR) was established to identify the structural damage.Then, the nonlinear recursive GARCH model was introduced to further improve the identification accuracy.Finally, the time-history data obtained in the tests of corroded RC beams was used to verify the effectiveness of the proposal algorithm.The results show that the residual variance ratio of the time series model can be effectively used to identify the structural damage.Compared to Kalman-AR model, the Kalman-GARCH model can explain the nonlinear characteristics and make up the recognition error caused by neglecting the heteroskedasticity of data.The accuracy can be improved by 14.2%.The results provide a new way for bridge structure state perception based on massive data.

关键词

桥梁结构 / 损伤识别 / Kalman滤波 / 时间序列 / 广义自回归条件异方差(GARCH)

Key words

bridge structure / damage identification / Kalman filtering / time series / generalized autoregressive conditional heteroskedasticity(GARCH)

引用本文

导出引用
周建庭1,2,李晓庆1,辛景舟1,2,阳珊清1,周应新3,4. 基于Kalman-GARCH模型的结构损伤识别[J]. 振动与冲击, 2020, 39(6): 1-7
ZHOU Jianting1,2,LI Xiaoqing1,XIN Jingzhou1,2,YANG Shanqing1,ZHOU Yingxin3,4. Structural damage identification based on a Kalman-GARCH model[J]. Journal of Vibration and Shock, 2020, 39(6): 1-7

参考文献

[1] Zhang Xigang, Liu Gao, Ma Junhai, et al. Status and prospect of technical development for bridges in China[J]. Chinese Science Bulletin, 2016, 61(4-5): 415.
[2] Deficient Bridges by Highway System-Bridge Tables–National Bridge Inventory–Bridge Inspection–Safety–Bridges & Structures–Federal Highway Administration [EB/OL]. https://www.fhwa.dot.gov/bridge/nbi/no10/defbr17.cfm
[3] 冯正霖. 我国桥梁技术发展战略的思考[J]. 中国公路, 2015(11):38-41.
Feng Zhenglin. Thoughts on the development strategy of bridge technology in China[J]. China Journal of Highway and Transport, 2015(11):38-41.
[4] 高维成,刘伟,邹经湘. 基于结构振动参数变化的损伤探测方法综述[J]. 振动与冲击, 2004, 23(4): 1-7.
Gao Weicheng, Liu Wei, Zou Jingxiang. Damdge detection methods based on changes of vibration parameters: a summary review[J]. Journal of Vibration shock, 2004, 23(4): 1-7.
[5] 韩大建, 王文东. 基于振动的结构损伤识别方法的近期研究进展[J]. 华南理工大学学报(自然科学版), 2003, 31(1):91-96.
Han Dajian, Wang Wendong, Overview of vibration-based damage identification methods[J]. Journal of South China University of Technology (Natural Science Edition), 2003, 31(1):91-96.
[6] Yang Qiuwei. A review of vibration-based structural damage identification methods[J]. Journal of Vibration & Shock, 2007, 26(10):86-91+100.
[7] Yan Y J, Cheng L, Wu Z Y, et al. Development in vibration-based structural damage detection technique[J]. Mechanical Systems & Signal Processing, 2007, 21(5):2198-2211.
[8] 王真,程远胜. 基于时间序列模型自回归系数灵敏度分析的结构损伤识别方法[J]. 工程力学, 2008(10): 38-43.
Wang Zhen, Chen Yuansheng. Structural damage identification based on sensitivity analysis of autoregressive coefficients of time series models[J]. Engineering mechanics, 2008(10): 38-43.
[9] Mustafa Gul, F. Necati Catbas. Structural health monitoring and damage assessment using a novel time series analysis methodology with sensor clustering[J]. Journal of Sound & Vibration, 2011, 330(6):1196-1210.
[10] Farahani R V, Penumadu D. Damage identification of a full-scale five-girder bridge using time-series analysis of vibration data[J]. Engineering Structures, 2016, 115: 129-139.
[11] 杜永峰,李万润,李慧,等. 基于时间序列分析的结构损伤识别[J]. 振动与冲击, 2012(12): 108-111.
DU Yong-feng, LI Wan-run, LI Hui et al. Structural damage identification based on time series analysis[J]. Journal of Vibration shock, 2012(12): 108-111.
[12] Hong T P, Yang B S. Estimation and forecasting of machine health condition using ARMA/GARCH model[J]. Mechanical Systems & Signal Processing, 2010, 24(2): 546-558.
[13] Chen Liujie, Yu Ling. Structural nonlinear damage identification algorithm based on time series ARMA/GARCH model[J]. Advances in Structural Engineering, 2013, 16(9): 1597-1610.
[14] Xin Jingzhou, Zhou Jianting, Yang Simon X., et al. Bridge structure deformation prediction based on GNSS data using Kalman-ARIMA-GARCH model[J]. Sensors, 2018, 18(1), 298.
[15] Chen Zengshun, Tse Tim K. T., Liu Si-Meng, et al. Application of a self-adaptive Kalman filter approach in alignment control for an extra long span rail transit cable-stayed bridge[J]. Structure and Infrastructure Engineering, 2017, 13(9): 1186–1197.
[16] Xie Yuanchang, Zhang Yunlong, Ye Zhirui. Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(5): 326-334.
[17] Jiang Yan; Huang Guoqing. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction. Energy Conversion and Management,2017, 144, 340–350.
[18] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4): 987-1007.
[19] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.
[20] Zhang Hong, Liao Leng, Zhao Ruiqiang, et al. A new judging criterion for corrosion testing of reinforced concrete based on self-magnetic flux leakage[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 54(1): 123–130.
[21] 干伟忠,金伟良,高明赞. 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报. 2011, 32(2): 41-47.
Gan Weizhong, Jin Weiliang, Gao Mingzan. Applicability study on accelerated corrosion methods of steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32(2): 41-47.
[22] Guo Yingshi, Wang Chang, Zhang Yaqi, et al. Analysis of noise variance's effect on Kalman filter result[J]. Computer Engineering & Design, 2014, 35, 641–645.
[23] Yang Jianxi, Zhou Yingxin, Zhou Jianting, et al. Prediction of bridge monitoring information chaotic using time series theory by multi-step BP and RBF neural networks[J]. Intelligent Automation & Soft Computing, 2013, 19(3): 305-314.
[24] Nair K K, Kiremidjian A S, Law K H. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure[J]. Journal of Sound & Vibration, 2006, 291(1): 349-368.
[25] Bao Chunxiao, Hao Hong, Li Zhongxian. Integrated ARMA model method for damage detection of subsea pipeline system[J]. Engineering Structures, 2013, 48: 176-192.
[26] 卢宏彬. 基于时间序列的结构损伤概率方法研究[D]. 华南理工大学, 2016.
Lu Hongbin. A study on structural damage probability method based on time series[D]. South China University of Technology. 2016

PDF(1874 KB)

497

Accesses

0

Citation

Detail

段落导航
相关文章

/