基于SST时频图纹理特征的供输弹系统故障诊断

潘宏侠,张玉学

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 132-137.

PDF(1614 KB)
PDF(1614 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 132-137.
论文

基于SST时频图纹理特征的供输弹系统故障诊断

  • 潘宏侠,张玉学
作者信息 +

Fault diagnosis of the ammunition supply system based on the texture features of SST time-frequency distribution image

  • PAN Hongxia,ZHANG Yuxue
Author information +
文章历史 +

摘要

对于供输弹系统早期故障中信号成分复杂,故障征兆难以识别的问题,提出了基于同步压缩变换(SST)时频图纹理特征的故障诊断方法。使用EEMD方法对供输弹系统振动信号进行预处理,对分解的分量进行相关系数运算,选取与原始信号相关系数大的前4层分量对信号进行重构,达到了一定的降噪效果;接着利用供输弹系统不同状态的信号通过同步压缩变换时频分析,得到反映不同运行状态的二维时频图像,并进行灰度化处理;利用灰度共生矩阵法与灰度梯度共生矩阵,对其进行纹理特征的提取,为与传统方法做对比,提取了信号经EEMD分解后,与原始信号相关系数大的前4层分量的能量百分比作为特征;使用基于核的模糊C均值聚类,对供输弹系统三种不同状态振动信号的图像纹理特征和能量百分比特征进行分类识别,并与模糊C均值聚类进行对比。实验结果表明,该方法能有效地对自动供输弹系统早期故障进行识别,且识别正确率达91.21%。

Abstract

For the complicated signal components in the early failure of the supply and delivery missile system, the  failure symptoms are usually difficult to identify.Aiming at this, an intelligent fault diagnosis method was proposed based on the texture features of synchrosqueezing wavelet transform(SST)time-frequency distribution images.The EEMD method was adopted to preprocess the vibration signal of the projectile delivery system, and to calculate the correlation coefficient of the decomposed components.The first four layers with high correlation coefficient were selected to reconstruct the signal for reducing the noise effect.Then, the vibration signals of different states of the transmissive bomb system were dealt with by the time-frequency analysis with the synchrosqueezing wavelet transform to obtain two-dimensional time-frequency images reflecting different operating states, and the gray-scale processing was performed.The gray level co-occurrence matrix method and the gray gradient co-occurrence matrix were used to extract the texture features.In order to compare with the traditional method, the energy percentage of the first four layers with large correlation coefficient of the original signal was taken as a feature after the signal was decomposed by EEMD.The method of kernel-based fuzzy C-means clustering, was used to do the classification and recognition of the image texture features and the image features of three different state vibration signals of the supply and delivery bomb system respectively, and the results were compared with those of the fuzzy C-means clustering.The experimental results show that the method can effectively recognize the early failure of automatic missile systems and the recognition accuracy is 91.21%.

关键词

供输弹系统 / 同步压缩变换(SST) / 纹理特征提取 / 模糊核聚类 / 故障诊断

Key words

ammunition supply system / synchrosqueezing wavelet transform(SST) / texture feature extraction / fuzzy kernel clustering / fault diagnosis

引用本文

导出引用
潘宏侠,张玉学. 基于SST时频图纹理特征的供输弹系统故障诊断[J]. 振动与冲击, 2020, 39(6): 132-137
PAN Hongxia,ZHANG Yuxue. Fault diagnosis of the ammunition supply system based on the texture features of SST time-frequency distribution image[J]. Journal of Vibration and Shock, 2020, 39(6): 132-137

参考文献

[1] Daubechies I,Lu F J,Wu H T. Synchrosqueezed wavelet transforms:An empirical mode decomposition like tool[J]. Applied and Computational Harmonic Analysis,2011,30:
    243-261.
[2]Dmytro Iatsenko, Peter V.E. McClintock. Linear and synchrosqueezed time–frequency representations revisited Overview, standards of use, resolution, reconstruction, concentration, and algorithms[J]. Digital Signal Processing,2015,42:1-26.
[3] 陶新民,徐晶,付强,等.基于样本密度KFCM新算法及其在故障诊断的应用[J].振动与冲击,2009,28(8):61-83.
 Tao Xinmin, Xu Jing, Fu Qiang, et al. KFCM based on sample                                                            density and its application in fault diagnosis [J]. Vibration and    shock,2009,28(8):61-83.
[4] 张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590.
Zhang Li, Zhou Weida, Jiao Licheng. Nuclear clustering algorithm [J]. Journal of Computer,2002,25(6):587-590.
[5] Zhang Rong,Rudnicky A I. A large scale clustering scheme for kernel k-means[C].Washington,DC,USA: The Sixteenth International Conference on Pattern Recognition,2002.
[6]喻敏,王斌,王文波,等.基于 SST 的间谐波检测方法[J].中国电机工程学报,2016,36(0):1-8.
Yu Min, Wang Bin, Wang Wenbo, et al. Inter-harmonic detection method based on SST [J]. Chinese Society for Electrical Engineering,2016,36(0):1-8.
[7]胡异丁,任伟新,杨 栋.基于同步压缩变换和局部替代数据的非平稳振动信号分解方法[J].振动与冲击,2013,32(23):43-47.
Hu Yiding, Ren Weixin, Yang Dong. Non-stationary vibration signal decomposition method based on synchronous compression transform and local substitute data [J]. Vibration and Shock,2013,32(23):43-47.
[8]Gadelmawla ES.A vision system for surface roughness characterization using the gray level co-occurrence matrix[J].NDT&E International,2004,37(7):577-588.
[9]洪继光.灰度-梯度共生矩阵纹理分析方法[J].自动化学报,1984,10(1):22-25.
Hong Jiguang. Gray-gradient co-occurrence matrix texture analysis method [J]. Journal of Automation,1984,10(1):22-25.
[10]白雪冰,邹丽晖.基于灰度-梯度共生矩阵的木材表面缺陷分割方法[J].森林工程,2007,23(2):16-18.
Bai Xuebin, Zou Lihui. Segmentation method of wood  surface defects based on gray-gradient co-occurrence    matrix [J]. Forest Engineering,2007,23(2):16-18.
[11]王亚萍,许迪,葛江华. 基于SPWVD时频图纹理特征的滚动轴承故障诊断[J].振动、测试与诊断,2017, 37(1):115-119.
WANG Ya-ping, XU Di, GE Jiang-hua. Fault Diagnosis of Rolling Bearing Based on SPWVD Time-frequency Map Texture Feature[J]. Vibration, Test & Diagnosis,2017, 37(1):115-119.
[12]罗露,戴劲松,樊永锋,等.节片式柔性导引设计与仿真[J].兵器装备工程学报,2019,40(1):102-105.
LUO Lu, DAI Jinsong, FAN Yongfeng, et al.Design andSimulation for Flexible  Guidance of Certain Type Ammunition Feed  System[J].Journal of Ordnance Equipment Engineering, 2019,40(1): 102-105.
[13]杨松,赫雷,沈超,等. 某新型自动防暴枪自动机动力学仿真[J].兵器装备工程学报,2017(3):57-61.
YANG Song,HE Lei,SHEN Chao,et al. Dynamic Simulation of a New Type Automatic Shot Gun[J].Journalof Ordnance Equipment Engineering,2017(3):57-61.
[14]於崇铭,任风云,田丰. 航空弹药铁路运输振动响应模型及影响因素分析[J].兵器装备工程学报,2017(11):151-154.
YU Chongming, REN Fengyun, TIAN Feng. Aviation Ammunition Vibration Response Model and Influence Factors Analysis of Railway Transportation[J].Journal of Ordnance Equipment Engineering, 2017(11):151-154.
[15]沈微,陶新民,高珊,常瑞,王若彤.基于同步挤压小波变换的振动信号自适应降噪方法[J]. 振动与冲击,2018,37(14):239-247.
SHEN Wei,TAO Xinmin,GAO Shan,CHANG Rui,WANG Ruotong. Self-adaptive de-noising algorithm for vibration signals based on synchrosqueezed wavelet transforms[J]. Vibration and Shock,2018,37(14):239-247.
 

PDF(1614 KB)

Accesses

Citation

Detail

段落导航
相关文章

/