一种基于特定频段信息熵和RBM的健康因子构建方法

张钢,田福庆,佘博,梁伟阁

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 147-153.

PDF(1482 KB)
PDF(1482 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 147-153.
论文

一种基于特定频段信息熵和RBM的健康因子构建方法

  • 张钢,田福庆,佘博,梁伟阁
作者信息 +

Health indicator construction method based on the information entropy of a specific frequency band and the RBM

  • ZHANG Gang,TIAN Fuqing,SHE Bo,LIANG Weige
Author information +
文章历史 +

摘要

针对传统物理健康因子存在单调性差、对早期故障不敏感等问题,提出一种基于特定频段信息熵和受限玻尔兹曼机(SEI-RBM)的虚拟健康因子构建模型。该模型由物理健康因子构建层和特征融合层两部分组成:在物理健康因子构建层中,提出一种基于特定频段信息熵的物理健康因子构建方法;特征融合层中,利用单调性准则选取部分物理健康因子组成特征集,利用受限玻尔兹曼机(RBM)对健康因子特征集进行融合,得到虚拟健康因子。实验结果表明:利用该模型构建的虚拟健康因子能够有效提高滚动轴承性能退化曲线的单调性,有助于提高剩余寿命预测的精确度。

Abstract

The traditional physic health indicator(PHI) has poor monotonicity and is insensitive to the incipient fault.Aiming at this, a virtual health indicator(VHI) construction model, was proposed based on the information entropy of a specific frequency band and the restricted Boltzmann machine(SEI-RBM).The model consists of two layers: physic health indicator construction layer and features fusion layer.In the physic health indicator construction layer, a method based on the information entropy of a specific frequency band was proposed to construct the physic health indicator.In the features fusion layer, the monotonicity metric was used to select parts of the PHIs to form feature sets, which were then fused by the restricted Boltzmann machine to get a VHI.The experiment results show that the proposed model could make a VHI, being able to effectively enhance the monotonicity of the degradation assessment curve and promote the remaining useful life prediction accuracy of rolling element bearings.

关键词

健康因子 / 信息熵 / 受限玻尔兹曼机(RBM) / 性能退化评估 / 滚动轴承

Key words

health indicator / information entropy / restricted Boltzmann machine(RBM) / degradation assessment / rolling element bearing

引用本文

导出引用
张钢,田福庆,佘博,梁伟阁. 一种基于特定频段信息熵和RBM的健康因子构建方法[J]. 振动与冲击, 2020, 39(6): 147-153
ZHANG Gang,TIAN Fuqing,SHE Bo,LIANG Weige. Health indicator construction method based on the information entropy of a specific frequency band and the RBM[J]. Journal of Vibration and Shock, 2020, 39(6): 147-153

参考文献

[1] Cerrada M, Sánchez R V, Li C, et al. A review on data-driven fault severity assessment in rolling bearings[J], Mechanical Systems and Signal Processing, 2018, 99: 169-196.
[2] Lei Y G, Li N P, Guo L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J], Mechanical Systems and Signal Processing, 2018, 104: 799-834.
[3] 佘博, 田福庆, 汤健, 等. 基于自适应LTSA算法的滚动轴承故障诊断[J]. 华中科技大学学报(自然科学版), 2017, 45(1): 91-96.
SHE Bo, TIAN Fu-qing, TANG Jian, et al. Fault Diagnosis of Rolling Bearing Based on Adaptive LTSA Algorithm[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45(1): 91-96.
[4] Wang D, Tsui K L, Miao Q. Prognostics and Health Management: A Review of Vibration based Bearing and Gear Health Indicators[J], IEEE Access, 2018, 6: 665-676.
[5] Khan S, Yairi T. A review on the application of deep learning in system health management[J], Mechanical Systems and Signal Processing, 2018, 107: 241-265.
[6] 程军圣, 黄文艺, 杨宇. 基于LFSS和改进BBA的滚动轴承在线性能退化评估特征选择方法[J], 振动与冲击, 2018, 37(11): 89-94.
CHENG Jun-sheng, HUANG Wen-yi, YANG Yu. Feature selection method for rolling bearings’ online performance degradation assessment based on LFSS and LSBBA[J], Journal of vibration and shock, 2018, 37(11): 89-94.
[7] Hong S, Zhou Z, Zio E, et al. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method[J], Digital Signal Processing, 2014, 27: 159-166.
[8] Hong S, Zhou Z, Zio E, et al. An adaptive method for health trend prediction of rotating bearings[J], Digital Signal Processing, 2014, 35: 117-123.
[9] Javed K, Gouriveau R, Zerhouni N. Enabling health monitoring approach based on vibration data for accurate prognostics[J], IEEE Transactions on industrial electronics, 2015, 62(1): 648-656.
[10] Widodo A, Yang B S. Application of relevance vector machine and survival probability to machine degradation assessment[J], Expert Systems with Applications, 2011, 38(3): 2592-2599.
[11] Soualhi A, Medjaher K, Zerhouni N. Bearing health monitoring based on Hilbert–Huang Transform, Support Vector Machine, and Regression[J], IEEE Transactions on instrumentation and measurement, 2015, 64(1): 52-62.
[12] 吴春志, 贾继德, 贾翔宇. 基于多尺度降维的柴油机信号信息熵增强方法[J], 振动与冲击, 2018, 37(3): 180-185.
WU Chun-zhi, JIA Ji-de, JIA Xiang-yu. A method to enhance information entropy of diesel engine dignals based on multi-scale dimention reduction[J], Journal of vibration and shock, 2018, 37(3): 180-185.
[13] Lei Y G, Li N P, Lin J. A model-based method for remaining useful life prediction of machinery[J], IEEE Transactions on reliability, 2016, 65(3): 1314-1326.
[14] 孙健, 李洪儒. 一种基于复合谱与关联熵融合的特征提取方法[J], 机械工程学报, 2017, 53(24): 96-103.
SUN Jian, LI Hon-gru. Method for feature extraction based on composite spectrum
and relative entropy fusion[J], Journal of mechanical engineering, 2017, 53(24): 96-103.
[15] Lei Y G, Li N P, Lin J. A new method based on stochastic process models for machine remaining useful life prediction[J], IEEE Transactions on instrumentation and measurement, 2016, 65(12): 2671-2684.
[16] Huang Z, Xu Z, Ke X, et al. Remaining useful life prediction for an adaptive skew-Wiener process model[J], Mechanical systems and signal processing, 2017, 87: 297-306.
[17] Zhu K, Jiang X, Chen L, et al. Performance Degradation Assessment of Rolling Element Bearings using Improved Fuzzy Entropy[J], Measurement Science Review, 2017, 17(5): 219-225.
[18] Benkedjouh T, Medjaher K, Zerhouni N, et al. Health assessment and life prediction of cutting tools based on support vector regression[J], Journal of intelligent manufacturing, 2015, 26: 213-223.
[19] Liao L X, Wen J, Pavel R. Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment[J], IEEE Transactions on industrial eletronics, 2016, 63(11): 7076-7083.
[20] Wang Y, Peng Y, Zi Y, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J], IEEE Transactions on industrial informatics, 2016, 12: 924-932.
[21] 赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J], 仪器仪表学报, 2018, 39(6): 82-88.
ZHAO Guang-quan, LIU Xiao-yong, JIANG Ze-dong, et al. Unsupervised Health Indicator of Bearing Based on Deep Learning[J]. Chinese Journal of Scientific Instrument, 2018, 39(6): 82-88.
[22] Hu Y, Palme T, Fink O. Deep health indicator extraction: A method based on auto-encoders and extreme learning machines[C]//Annual Conference of the Prognostics and Health Management Society, 2016.

PDF(1482 KB)

385

Accesses

0

Citation

Detail

段落导航
相关文章

/