小初始挠度两端固支屈曲梁的非线性动力学分析

肖龙江,黄建亮

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 161-166.

PDF(1789 KB)
PDF(1789 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 161-166.
论文

小初始挠度两端固支屈曲梁的非线性动力学分析

  • 肖龙江,黄建亮
作者信息 +

Nonlinear dynamics of a fixed-fixed buckled beam with low initial deflection

  • XIAO Longjiang,HUANG Jianliang
Author information +
文章历史 +

摘要

两端固支屈曲梁是同时包含二、三次非线性项的系统。该研究在小初始挠度屈曲下,受基础激励力变化时系统的非线性动力学特性。利用Galerkin方法对屈曲梁的振动方程进行离散,采用变外激励力增量谐波平衡(IHB)法追踪屈曲梁的动力响应,并用Floquent理论对系统的周期解进行稳定性和分岔分析。研究发现,在小初始挠度屈曲下,梁的反对称模态并未被激发;而随着外激励力的变化,系统会发生倍周期分岔和鞍结分岔,导致解的突变。应用IHB法得到的计算结果与应用四阶Runge-Kutta法得到的数值结果吻合。

Abstract

The nonlinear dynamics of a fixed-fixed buckled beam with low initial deflection subject to uniform hamonic base excitation was concerned, which was governed by a coupled nonlinear equation with both quadratic and cubic nonlinearities.The Galerkin method was employed to discretize the governing equation, and the incremental harmonic balance (IHB) method with variable excitation force was used to track the dynamic response of the buckled beam.The Floquet theory was used to analyze the stability and bifurcation of the solution.It is found that at low initial deflection, the anti-symmetric modes cannot be excited,however, period-doubling and saddle node bifurcations will occur and lead to snapthrough of the solution.The results obtained by incremental harmonic balance method agree very well with those by the numerical integration using the fourth-order Runge-Kutta method.

关键词

屈曲梁 / 非线性动力学 / 增量谐波平衡(IHB)法 / 分岔 / 混沌

Key words

buckled beam / nonlinear dynamics / incremental harmonic balance(IHB) method / bifurcation / chaos

引用本文

导出引用
肖龙江,黄建亮. 小初始挠度两端固支屈曲梁的非线性动力学分析[J]. 振动与冲击, 2020, 39(6): 161-166
XIAO Longjiang,HUANG Jianliang. Nonlinear dynamics of a fixed-fixed buckled beam with low initial deflection[J]. Journal of Vibration and Shock, 2020, 39(6): 161-166

参考文献

[1] 刘海平,杨建中,罗文波,等. 新型欧拉屈曲梁非线性动力吸振器的实现及抑振特性研究[J]. 振动与冲击,2016,35(11):155-160.
LIU Haiping,YANG Jianzhong,LIU Wenbo,et al. Realization and vibration supperession ability of a new novel Euler buckled beam nonlinear vibration absorber[J]. Journal of Vibration and Shock, 2016,35(11):155-160.
[2] ZAREI M,FAGHANI G,GHALAMI M,et al. Buckling and vibration analysis of tapered circular Nano plate[J].  Journal of Applied and Computational Mechanics,2018,4(1):40-54.
[3] 李爱民. 屈曲梁Workbench仿真与试验分析[J]. 实验室研究与探索,2018,37(5):95-99.
LI Aimin. Workbench simulation and experimental analysis of buckling beam[J]. Research and Exploration in Laboratory,2018,37(5):95-99.
[4] NAYFEH A H,KREIDER W,ANDERSON T J. Investigation of natural frequencies and mode shapes of buckled beams[J]. American Institute of Aeronautics and Astronautics Journal, 1995,33(6):1121-1126.
[5] TSENG W Y, DUGUNDJI J. Nonlinear vibrations of a buckled beam under harmonic excitation[J]. Journal of Applied Mechanics,1971,38(2):467-476.
[6] KREIDER W,NAYFEH A H. Experimental investigation of single-mode responses in a fixed-fixed buckled beam[J]. Nonlinear Dynamics,1998,15(2):155-177.
[7] EMAM S A,NAYFEH A H. On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation[J].  Nonlinear Dynamics,2004,35(1):1-17.
[8] EMAM S A,NAYFEH A H. Nonlinear responses of buckled beams to subharmonic-resonance excitations[J]. Nonlinear Dynamics,2004,35(2):105-122.
[9] LESTARI W,HANAGUD S. Nonlinear vibration of buckled beams: some exact solutions[J]. International Journal of Solids and Structures,2001,38(26):4741-4757.
[10] AFANEH A A,IBRAHIM R A. Nonlinear response of an initially buckled beam with 1:1 internal resonance to sinusoidal excitation[J]. Nonlinear Dynamics,1993,4(6):547-571.
[11] HUANG J L,SU R K L,LEE Y Y,et al. Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities[J]. Journal of Sound and Vibration. 2011,330(21):5151-5164.
[12] HUANG J L,SU R K L,LEE Y Y,et al. Various bifurcation phenomena in a nonlinear curved beam subjected to base harmonic excitation[J]. International Journal of Bifurcation and Chaos. 2018,28(7):1830023.
[13] HUANG J L,ZHU W D. An incremental harmonic balance method with two timescales for quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies[J]. Nonlinear Dynamics,2017,90(2):1015-1033.
[14] HUANG J L,ZHU W D. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation[J]. Journal of Vibration and Acoustics,2017,139(2):021010.
[15] 曾志刚,叶  敏. 粘弹性复合材料屈曲梁非线性参数振动的稳定性和分岔分析[J]. 振动与冲击,2012,31(2):129-135.
ZENG Zhigang,YE Min. Stability and bifurcation of a parametrically excited viscoelastic composite buckled beam[J]. Journal of Vibration and Shock,2012,31(2):129-135.
[16] 熊柳杨,张国策,丁  虎,等. 黏弹性屈曲梁非线性内共振稳态周期响应[J]. 应用数学和力学,2014,35(11):1188-1196.
XIONG Liuyang,ZHANG Guoce,Ding Hu,et al. Steady-state periodic responses of a viscoelastic buckled bean in nonlinear internal resonance[J]. Applied Mathematics and Mechanics,2014,35(11):1188-1196.
[17] 何其伟,俞  翔,毛为民. 高维强非线性隔振系统谐波及分岔分析[J]. 振动与冲击,2016,35(11):61-65.
HE Qiwei,YU Xiang,MAO Weimin. Subharmonic and bifurcation analysis for a high-dimensional strongly nonlinear vibration isolation system[J]. Journal of Vibration and Shock,2016,35(11):61-65.
[18] 黄玲璐,毛晓晔,丁  虎,等. 内共振作用下轴向运动黏弹性梁横向受迫振动[J]. 振动与冲击,2017,36(17):69-73.
HUANG Linglu,MAO Xiaoye,DING Hu,et al. Transverse non-linear forced vibration of an axially moving viscoelastic beam with an internal resonance[J]. Journal of Vibration and Shock,2017,36(17):69-73.
[19] 王云峰,李  博,王利桐. 两端固支屈曲梁准零刚度隔振器的微振动隔振性能分析[J]. 振动与冲击,2018,37(15):124-129.
WANG Yunfeng,LI Bo,WANG Litong. Micro-vibration isolation performance of a clamped-clamped buckled beam quasi-zero-stiffness isolator[J]. Journal of Vibration and Shock,2018,37(15):124-129.

PDF(1789 KB)

Accesses

Citation

Detail

段落导航
相关文章

/