基于局部应变补偿的加筋板改进滑模振动控制

杜菲1,2,3,马天兵1,2,3,刘健3,罗智3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 176-180.

PDF(1650 KB)
PDF(1650 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 176-180.
论文

基于局部应变补偿的加筋板改进滑模振动控制

  • 杜菲1,2,3,马天兵1,2,3,刘健3,罗智3
作者信息 +

Improved sliding mode vibration control for a stiffened plate based on local strain compensation

  • DU Fei1,2,3,MA Tianbing1,2,3,LIU Jian3,LUO Zhi3
Author information +
文章历史 +

摘要

在加筋板的振动主动控制中,传感片和作动片多采用对位粘贴形式,经实验证明,此方式存在局部应变效应,会导致振动控制效果减弱,甚至控制发散。针对该问题,构建了局部应变补偿方案,设计了基于局部应变补偿的改进幂次趋近律滑模控制算法,并选择加筋板振动作为研究对象,利用NI-CompactRIO 9024平台进行了加筋板振动主动控制实验。实验结果表明,针对加筋板的第一阶模态,基于局部应变补偿的改进幂次趋近律滑模控制算法振动抑制效果达到13.16 dB,相对于未补偿的改进幂次趋近律滑模算法效果的10.59 dB,提升了2.57 dB。

Abstract

In the active vibration control of a stiffened plate, the sensing piece and the actuation piece are in a relative position pasting form.Experiments show that there is local strain effect in this way, which will lead to the attenuation of vibration control effect and even the divergence of control.Aiming at this, a local strain compensation scheme was constructed and an improved power law approaching sliding mode control algorithm based on local strain compensation was designed.The vibration mode of the stiffened plate was taken as the control object.An active vibration control experiment of the stiffened plate was carried out on the NI-CompactRIO 9024 platform.The experimental results show that the vibration suppression effect of the improved power law approaching sliding mode control algorithm based on local strain compensation could reach 13.16 dB for the first mode of the stiffened plate, which is 2.57 dB higher than the 10.59 dB of the uncompensated improved power law approaching sliding mode algorithm.

关键词

振动控制 / 局部应变 / 改进滑模 / 加筋板

Key words

vibration control / local strain / improved sliding mode / stiffened plate

引用本文

导出引用
杜菲1,2,3,马天兵1,2,3,刘健3,罗智3. 基于局部应变补偿的加筋板改进滑模振动控制[J]. 振动与冲击, 2020, 39(6): 176-180
DU Fei1,2,3,MA Tianbing1,2,3,LIU Jian3,LUO Zhi3. Improved sliding mode vibration control for a stiffened plate based on local strain compensation[J]. Journal of Vibration and Shock, 2020, 39(6): 176-180

参考文献

[1] Ji H L, Qiu J H, Wu Y P, et al. Novel Approach of Self-Sensing Actuation for Active Vibration Control[J]. Journal of Intelligent Material Systems & Structures, 2011, 22(22):449-459.
[2] Liao W H. Implementation of structures with self-sensing piezoelectric actuators incorporating adaptive mechanisms[J]. Smart Materials and Structures, 2003, 12(5):720.
[3] 胡芳, 张志谊, 华宏星. 振动控制中压电作动器非线性的补偿方法研究[J]. 振动与冲击, 2010, 29(11):55-60.
Hu Fang, Zhang Zhiyi, Hua Hongxing. Research on nonlinear compensation method of piezoelectric actuator in vibration control[J]. Journal of Vibration and Shock, 2010, 29(11): 55-60.
[4] 王在华, 李俊余. 时滞状态正反馈在振动控制中的新特征[J].力学学报, 2010, 42(5):933-942.
Wang Zaihua, Li Junyu. New features of positive feedback of time-delay state in vibration control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 933-942.
[5] 宋玉宝,温激鸿,郁殿龙,沈惠杰.板结构振动与噪声抑制研究综述[J].机械工程学报, 2018, 54(15):60-77.
Song Yubao, Wen Qihong, Yu Dianlong, Shen Huijie. A Review of Vibration and Noise Suppression in Plate Structures[J]. Journal of Mechanical Engineering , 2018, 54(15):60-77.
[6] 张建君. 压电加筋板结构时滞振动主动控制研究[D].安徽理工大学,2016.
Zhang Jianjun. Study on active control of piezoelectric vibratory plate with time delay[D]. Anhui University of Science and Technology, 2016.
[7] 郭士旭, 余尚江, 陈晋央,等. 压电式压力传感器动态特性补偿技术研究[J]. 振动与冲击, 2016, 35(2):136-140.
Guo Shi-xu, Yu Shang-jiang, Chen Jin-yang, et al. Research on dynamic characteristics compensation technology of piezoelectric pressure sensor[J]. Journal of Vibration and Shock, 2016, 35(2): 136-140.
[8] Ali N B H, Smith I F C. Dynamic behavior and vibration control of a tensegrity structure[J]. International Journal of Solids & Structures, 2010, 47(9):1285-1296.
[9] 马天兵, 杜菲, 吴义鹏. 智能结构振动同位配置控制中的局部应变研究[J]. 振动与冲击, 2012, 31(14):94-97.
Ma Tianbing, Du Fei, Wu Yipeng. Study on Local Strain in Control of Intelligent Structure Vibration Co-location Configuration[J]. Journal of Vibration and Shock, 2012, 31(14):94-97.
[10] 姚军, 李岳锋, 姚起杭. 压电结构电子阻尼增进的关键——局部激励应变补偿[C].中国博士后学术会议, 2000.
Yao Jun, Li Yuefeng, Yao Qihang. The key to the enhancement of electronic damping in piezoelectric structures—the compensation of local excitation strain[C]. China Postdoctoral Conference, 2000.
[11] 陈春强, 陈前. 电流变夹层板滑模振动控制[J]. 噪声与振动控制, 2016, 36(2):194-198.
Chen Chunqiang, Chen Qian. Sliding Mode Vibration Control of Electrorheological Sandwich Plates[J]. NOISE AND VIBRATION CONTROL, 2016, 36(2):194-198.
[12] 敦艳茹. 伺服电机驱动的连铸结晶器振动系统建模和滑模控制研究[D].燕山大学,2017.
Dun Yanru. Modeling and Sliding Mode Control of Servomotor Driven Continuous Casting Mold Vibration System[D]. Yanshan University, 2017.
[13] 刘金琨. 滑模变结构控制MATLAB仿真.第2版[M]. 清华大学出版社, 2012.
Liu Jinbiao. Sliding Mode Variable Structure Control MATLAB Simulation. 2nd Edition [M]. Tsinghua University Press, 2012.
[14] 李慧洁,蔡远利.基于双幂次趋近律的滑模控制方法[J].控制与决策,2016,31(03):498-502.
Li Huijie,Cai Yuanli.Sliding Mode Control Method Based on Double-power Reaching Law[J].Control and Decision,
2016,31(03):498-502.
[15] 张合新,范金锁,孟飞,黄金峰.一种新型滑模控制双幂次趋近律[J].控制与决策,2013,28(02):289-293.
Zhang Hexin,Fan Jinsuo,Meng Fei,Jin Huangfeng.A New Sliding Mode Control Dual-power Approaching Law[J].
Control and Decision,2013,28(02):289-293.
[16] 浦玉学, 张方, 姜金辉. 变步长自适应结构振动主动控制算法[J]. 振动与冲击, 2015, 34(10):199-205.
Pu Yuxue, Zhang Fang, Jiang Jinhui. Active Control Algorithm for Adaptive Structure Vibration with Variable Step Size[J]. Journal of Vibration and Shock, 2015, 34(10): 199-205.
[17] Song Z G, Li F M. Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate[J]. Composite Structures, 2012, 94(2):702-713.

PDF(1650 KB)

Accesses

Citation

Detail

段落导航
相关文章

/