面向星球探测的高速撞击穿透器缓冲防护设计与仿真分析

骆海涛1,陈士朋2,富佳1,刘广明1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 198-204.

PDF(2678 KB)
PDF(2678 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 198-204.
论文

面向星球探测的高速撞击穿透器缓冲防护设计与仿真分析

  • 骆海涛1,陈士朋2,富佳1,刘广明1
作者信息 +

Buffer protection design and simulation analysis of a high-speed impact penetrator for planetary exploration

  • LUO Haitao1,CHEN Shipeng2,FU Jia1,LIU Guangming1
Author information +
文章历史 +

摘要

高速撞击穿透器以碰撞的方式嵌入天体内部,由于其着陆速度大,碰撞产生的过载严重,为了保证科学载荷在碰撞后能正常工作并且足够灵敏,必须对其进行减振防护。该研究对穿透器的减振结构进行设计,采用非线性有限元技术对穿透器的侵彻过程进行仿真分析,确定了穿透器的着陆速度,并研究了主要减振结构,即泡沫填充铝薄壁管,在碰撞载荷作用下的动态响应和能量吸收问题。从分析结果看,泡沫铝填充薄壁管在隔冲效率和能量吸收方面有较好的效果。

Abstract

The high-speed impact penetrator dives into the interior of a planet in a collisional manner.Due to its high landing speed, the overload generated by the collision is severe.In order to ensure that the scientific instruments can work well after collision, the buffer protection must be designed.The vibration damping structure of a penetrator was designed.The nonlinear finite element technique was used to simulate the penetrating process of the penetrator, and the landing speed of the penetrator was then determined.The dynamic response and energy absorption of the main vibration-damping structure, foam-filled aluminum thin-walled tubes, under impact loads were investigated.From the analysis results, foam-filled thin-wall structures, used as an impact energy absorber, has excellent performance in terms of shock isolation efficiency and total energy absorption.

关键词

高速撞击穿透器 / 缓冲防护 / 泡沫铝填充薄壁 / 侵彻性能

Key words

high-speed impact penetrator / buffer protection / foam-filled thin-wall structure / penetration performance

引用本文

导出引用
骆海涛1,陈士朋2,富佳1,刘广明1. 面向星球探测的高速撞击穿透器缓冲防护设计与仿真分析[J]. 振动与冲击, 2020, 39(6): 198-204
LUO Haitao1,CHEN Shipeng2,FU Jia1,LIU Guangming1 . Buffer protection design and simulation analysis of a high-speed impact penetrator for planetary exploration[J]. Journal of Vibration and Shock, 2020, 39(6): 198-204

参考文献

[1] 徐萧, 高世桥, 牛少华,等. 灌封材料对侵彻过载下弹载器件的防护分析[J]. 兵工学报, 2017, 38(7):1289-1300.
XU Xiao, GAO Shi-qiao, NIU Shao-hua, et al. Dynamic Analysis of Projectile-borne Electronic Devices under Impact Loading[J], Acta Armamentarii, 2017, 38(7):1289-1300.
[2] 丁楠. 金属薄壁结构及填充聚氨酯结构的吸能特性[D]. 哈尔滨:哈尔滨工程大学, 2014.
DING Nan. Energy absorption characteristic of thin-walled metal structures and filled polyurethane structure[D]. Harbin:Harbin Engineering University, 2014.
[3] Barnes A T, Ravi-Chandar K, Kyriakides S, et al. Dynamic crushing of aluminum foams: Part I – Experiments[J]. International Journal of Solids & Structures, 2014, 51(9):1631-1645.
[4] Wang Z, Shen J, Lu G, et al. Compressive behavior of closed-cell aluminum alloy foams at medium strain rates[J]. Materials Science & Engineering A, 2011, 528(6):2326-2330.
[5] 李忠献, 张茂轩, 师燕超. 闭孔泡沫铝的动态压缩性能试验研究[J]. 振动与冲击, 2017, 36(5):1-6.
 LI Zhong-xian, ZhANG Mao-xuan, SHI Yan-chao. Tests for dynamic compressive performance of closed-cell aluminum foams[J]. Journal of Vibration and Shock, 2017, 36(5):1-6.
[6] Bi J, Fang H, Wang Q, et al. Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs[J]. Finite Elements in Analysis & Design, 2010, 46(9):698-709.
[7] Fang H, Bi J, Zhang C, et al. A Constitutive Model of Aluminum Foam for Crash Simulations[J]. International Journal of Non-Linear Mechanics, 2017, 90:124-136.
[8] Dirgantara T, Jusuf A, Kurniati E O, et al. Crashworthiness analysis of foam–filled square column considering strain rate effect of the foam[J]. Thin-Walled Structures, 2018, 129:365-380.
[9] 高强, 王良模, 王源隆,等. 椭圆形泡沫填充薄壁管斜向冲击吸能特性仿真研究[J]. 振动与冲击, 2017, 36(2):201-206.
 GAO Qiang, WANG Liang-mo, WANG Yuan-long, et al. Energy-absorbing characteristics of foam-filled oval tubes under oblique impact[J]. Journal of Vibration and Shock, 2017, 36(2):201-206.
[10] Yin H, Wen G, Liu Z, et al. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures[J]. Thin-Walled Structures, 2014, 75(75):8-17.
[11] Wu S, Zheng G, Sun G, et al. On design of multi-cell thin-wall structures for crashworthiness[J]. International Journal of Impact Engineering, 2016, 88:102-117.
[12] 周必磊, 王强, 尤伟, et al. 月球穿透器与月震仪组网探测研究[J]. 上海航天, 2012, 29(5):29-35.
ZHOU Bi-lei, Wang-qiang, You Wei, et al. Study of Lunar Penetrator and Seismic Network Exploration[J]. Aerospace Shanghai, 2012, 29(5):29-35.
[13] 董永香, 冯顺山, 李砚东,等. 土介质对低速弹丸的抗侵彻性能实验研究[J]. 高压物理学报, 2007, 21(4):419-424.
DONG Yong-xiang, FENG Shun-shan,. LI Yan-dong, et al. Experimental Study on Penetration Resistance of Soil with Low-Velocity Projectile[J], Chinese Journal of High Pressure Physics, 2007, 21(4):419-424.
[14] Luk V K, Forrestal M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles[J]. International Journal of Impact Engineering, 1987, 6(4):291-301.
[15] Forrestal M J, Luk V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444.
[16] Yin H, Xiao Y, Wen G, et al. Multi-objective robust optimization of foam-filled bionic thin-walled structures[J]. Thin-Walled Structures, 2016, 109:332-343.
[17] Reyes A, Hopperstad O S, Berstad T, et al. Constitutive modeling of aluminum foam including fracture and statistical variation of density[J]. European Journal of Mechanics / A Solids, 2003, 22(6):815-835.
[18] Sun G, Li G, Hou S, et al. Crashworthiness design for functionally graded foam-filled thin-walled structures[J]. Materials Science & Engineering A, 2010, 527(7):1911-1919.
[19] Hou S, Li Q, Long S, et al. Crashworthiness design for foam filled thin-wall structures[J]. Materials & Design, 2009, 30(6):2024-2032.
[20] Ma Aili, Huazhong Agricultural University ,Wuhan. Numerical simulation of soil cutting by spiral cutter on the basis of ANSYS/LS_DYNA[J]. Journal of Huazhong Agricultural University, 2009, 28(2):248-252.
[21] 高猛. 高g值冲击下泡沫铝填充壳缓冲吸能多目标优化研究[D]. 太原:中北大学, 2016.
GAO Meng, Multiobjective of buffer absorbing energy optimization for foam -filled thin-walled structures subjected to high g value impact[D]. North University of China, 2016.
[22] 陈吉清, 周鑫美, 饶建强,等. 汽车前纵梁薄壁结构碰撞吸能特性及其优化的研究[J]. 汽车工程, 2010, 32(6):486-492.
CHEN Ji-qing, ZHOU Xin-mei, RAO Jian-qiang, et al. A research on the impact energy absorption characteristics and optimization of thin-walled structure of vehicle front rail[J]. Automotive Engineering, 2010, 32(6):486-492.
[23] Zhang P, Wang Z, Zhao L. Dynamic crushing behavior of open-cell aluminum foam with negative Poisson’s ratio[J]. Applied Physics A, 2017, 123(5):321.

PDF(2678 KB)

727

Accesses

0

Citation

Detail

段落导航
相关文章

/