子结构传感器位置优化和响应重构

张笑华,周海洋,吴志彪

振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 257-262.

PDF(1409 KB)
PDF(1409 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (6) : 257-262.
论文

子结构传感器位置优化和响应重构

  • 张笑华,周海洋,吴志彪
作者信息 +

Sensor location selection and response reconstruction of a substructure

  • ZHANG Xiaohua, ZHOU Haiyang, WU Zhibiao
Author information +
文章历史 +

摘要

提出了一种子结构传感器位置优化和未测点结构响应重构的方法。按照结构体系,将整体结构划分为多个子结构,减少研究对象的自由度数目,然后对每个子结构单独进行传感器位置优化和响应重构。由于每个子结构的自由度数目都远小于整体结构,该方法有利于提高传感器位置优化和响应重构的效率。以最小化重构误差为目标方程,确定子结构传感器的位置和数目,并利用优化位置上的测量信息重构未测点的响应。数值算例和试验分析结果显示,利用有限测点测量信息重构的结构响应,在时域和频域里均能与计算或测量响应吻合良好。该方法不需要分割隔离各子结构和考虑复杂的边界条件,有利于该方法在大型土木工程结构中的使用。

Abstract

A method for sensor location selection was proposed for the response reconstruction of a substructure.According to the structure of a system, the whole structure was disassembled into several substructures to reduce the number of degrees of freedom (DOFs).Then the sensor location optimization and response reconstruction of each substructure were conducted separately.Since the number of DOFs of each substructure is far less than that of the whole structure, the method can improve the efficiency of sensor location optimization and response reconstruction.The sensor locations were determined by minimizing the reconstruction errors between the reconstructed and analyzed responses.The results of numerical and experimental investigations demonstrate that the reconstructed response by using finite measurements match well with the analyzed or measured responses both in time and frequency domains.The proposed method does not reuqire to isolate the substructures and consider the complicated boundary conditions, which is beneficial for its application in large-scale civil engineering structures.

关键词

子结构 / 传感器位置优化 / 有限测点 / 响应重构

Key words

substructure / sensor optimal placement / finite measurements / response reconstruction

引用本文

导出引用
张笑华,周海洋,吴志彪. 子结构传感器位置优化和响应重构[J]. 振动与冲击, 2020, 39(6): 257-262
ZHANG Xiaohua, ZHOU Haiyang, WU Zhibiao . Sensor location selection and response reconstruction of a substructure[J]. Journal of Vibration and Shock, 2020, 39(6): 257-262

参考文献

[1] Kammer D C. Estimation of structural response using remote sensor locations [J]. Journal of Guidance, Control and Dynamics, 1997, 20: 501-508.
[2] Mace B R, Halkyard C R. Time domain estimation of response and intensity in beams using wave decomposition and reconstruction [J]. Journal of Sound and Vibration, 2000, 230: 561-589.
[3] He J, Guan X, Liu Y. Structural response reconstruction based on empirical mode decomposition in time domain [J]. Mechanical Systems and Signal Processing, 2012, 28: 348-366.
[4] Wang J, Law S S, Yang Q S. Sensor placement method for dynamic response reconstruction [J]. Journal of Sound and Vibration, 2014, 333: 2469-2482.
[5] Niu Y, Firtzen C P, Jung H, Buethe I, Ni Y Q, Wang Y W. Online simultaneous reconstruction of wind load and structural responses-theory and application to Canton Tower [J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30: 666-681.
[6] Law S S, Li J. Ding Y, Structural response reconstruction with transmissibility concept in frequency domain [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 952-968.
[7] Li J, Law S S. Substructural response reconstruction in wavelet domain [J]. Journal of Applied Mechanics ASME, 2011, 78(4): 041010.
[8] Li J, Hao H. Substructure damage identification based on wavelet-domain response reconstruction [J]. Structural Health Monitoring, 2014, 13(4): 389-405.
[9] Lai T, Yi T H, Li H N. Wavelet-Galerkin method for reconstruction of structural dynamic responses [J]. Advances in Structural Engineering, 2017, 20(8): 1174-1184.
[10] Limongelli M P. Optimal location of sensors for reconstruction of seismic responses through spline function interpolation [J]. Earthquake Engineering and Structural Dynamics, 2003, 32: 1055–1074.
[11] Zhang X H, Zhu S, Xu Y L, Hong X J. Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response [J]. International Journal of Structural Stability and Dynamics, 2011, 11(3): 581-602.
[12] Zhang X H, Xu Y L, Zhan S, Zhu S. Dual-type sensor placement for multi-scale response reconstruction [J]. Mechatronics-an International Journal, 2014, 24(4): 376-384.
[13] 张笑华,任伟新,方圣恩.两种传感器的位置优化及结构多种响应重构 [J]. 振动与冲击,2014, 33(18): 26-30.
ZHANG Xiao-hua, REN Wei-xin, FANG Sheng-en. Location optimization of dual-type sensors for multi-kind structural response reconstruction [J]. Journal of Vibration and Shock, 2014, 33(18): 26-30.
[14] Klerk D, Rixen D J, Voormeeren S N. General framework for dynamic substructuring: history, review, and classification of techniques [J]. AIAA Journal, 2008, 46:1169-1181.
[15] Weng S, Xia Y, Xu Y L, Zhu H P. Substructure based approach to finite element model updating [J]. Computers and Structures, 2011, 89(9-10): 772-782.
[16] 周林仁,欧进萍, 斜拉桥结构模型修正的子结构方法 [J].振动与冲击,2014, 33(19): 52-58.
ZHOU Lin-ren, OU Jin-ping. A substructure method for structural model updating of long-span cable-stayed bridges [J]. Journal of Vibration and Shock, 2014, 33(19): 52-58.
[17] 王陶,何欢, 闫伟,陈国平.一种利用子结构综合技术的模型修正方法 [J]. 振动与冲击, 2017, 36(2): 147-152.
WANG Tao, HE Huan, YAN Wei, CHEN Guo-ping. Model updating approach based on improved component mode synthesis [J]. Journal of Vibration and Shock, 2017, 36(2): 147-152.
[18] 翁顺, 左越, 朱宏平, 陈波, 赵会贤, 田炜, 颜永逸. 基于子结构的有限元模型修正方法 [J]. 振动与冲击, 2017, 36(4): 99-104.
WENG Shun, ZUO Yue, ZHU Hong-ping, CHEN Bo, ZHAO Hui-xian, TIAN Wei, YAN Yong-yi. Model updating based on a substructuring method [J]. Journal of Vibration and Shock, 2017, 36(4): 99-104.

PDF(1409 KB)

923

Accesses

0

Citation

Detail

段落导航
相关文章

/