基于自适应模糊补偿的不确定性机器人CNF控制

蒋沅1,2,3,公成龙1,吕科2,代冀阳1,3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 106-111.

PDF(1080 KB)
PDF(1080 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 106-111.
论文

基于自适应模糊补偿的不确定性机器人CNF控制

  • 蒋沅1,2,3,公成龙1,吕科2,代冀阳1,3
作者信息 +

Adaptive fuzzy compensator based CNF control for uncertain robot manipulators

  • JIANG Yuan1,2,3,GONG Chenglong1,L Ke2,DAI Jiyang1,3
Author information +
文章历史 +

摘要

为解决不确定性因素对机器人系统的影响,实现不确定性机器人系统准确跟踪参考输入的能力,研究了自适应模糊控制和组合非线性反馈(CNF)控制相结合的策略。提出了一种基于自适应模糊补偿的机器人CNF控制器。核心是将系统的不确定性利用自适应模糊控制进行在线逼近,作为CNF控制器的补偿项,充分利用两种控制方法的优势,降低不确定性因素对系统性能的影响。通过反馈线性化技术与Lyapunov理论,证明了闭环系统的收敛性;最终仿真结果证实了此方法的有效性。

Abstract

In order to solve the influence of uncertain factors on a robot system and realize the ability of the uncertain robot system to track the reference input accurately, the strategy of combining adaptive fuzzy control and composite nonlinear feedback (CNF) control was studied, and a robot CNF controller based on adaptive fuzzy compensation was proposed.The core is to systematically use the adaptive fuzzy control to approach the uncertainty of the system and use it as a compensation item of the CNF controller to fully utilize the advantages of the two control methods to reduce the impact of uncertainties on the system performance.Through feedback linearization and the Lyapunov theory, the convergence of the closed-loop system was proved.The final simulation results confirm the effectiveness of the method.

关键词

机器人 / 不确定性 / 自适应模糊控制 / 组合非线性反馈(CNF)控制 / 系统收敛

Key words

robot / uncertainty / adaptive fuzzy control / composite nonlinear feedback(CNF) control / system convergence

引用本文

导出引用
蒋沅1,2,3,公成龙1,吕科2,代冀阳1,3. 基于自适应模糊补偿的不确定性机器人CNF控制[J]. 振动与冲击, 2020, 39(8): 106-111
JIANG Yuan1,2,3,GONG Chenglong1,L Ke2,DAI Jiyang1,3. Adaptive fuzzy compensator based CNF control for uncertain robot manipulators[J]. Journal of Vibration and Shock, 2020, 39(8): 106-111

参考文献

[1] 刘金琨. 机器人控制系统的设计与MATLAB仿真-先进设计方法[M]. 北京: 清华大学出版社, 2017. LIU J K. Design of robot control system and MATLAB simulation-advanced design method[M]. Beijing: Tsinghua University Press, 2017. [2] AFLAKIYAN A, BAYANI H, MASOULEH M T. Computed torque control of a cable suspended parallel robot[C]// Rsi International Conference on Robotics and Mechatronics. Iranian: IEEE, 2016. 749-754. [3] WANG H, LIU M, ZHAO W D. Adaptive control of robot manipulators with uncertain kinematics and dynamics[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 948-954. [4] 易江, 朱秋国, 吴俊,等. 基于最优控制的仿人机器人行走振动抑制[J]. 机器人, 2018, 40(2): 129-135. YI J, ZHU Q G, WU J, et al. Walking vibration suppression of humanoid robot based on optimal control [J]. robot, 2018, 40 (2): 129-135. [5] SICILIANO B, SCIAVICCO L. Modelling and control of robot manipulators[J]. Industrial Robot, 2000, 11(1): 1828. [6] LU X G, LIU M, LIU J X. Design and Optimization of interval type-2 fuzzy logic controller for delta parallel robot trajectory control[J]. International Journal of Fuzzy Systems, 2017, 19(1): 190-206. [7] LI X, CHENG C C. Adaptive neural network control of robot based on a unified objective bound[J]. IEEE Transactions on Control Systems Technology, 2013, 22(3): 1032-1043. [8] CHEN B M, LEE T H, PENG K. Composite nonlinear feedback control for linear systems with input saturation: theory and an application[J]. IEEE Trans.automat.contr, 2003, 48(3): 427-439. [9] EREN S, PAHLEVANINEZHAD M, BAKHSHAI A. Composite nonlinear feedback control and stability analysis of a grid-connected voltage source inverter with LCL filter[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 5059-5074. [10] KALI Y, SAAD M, BENJELLOUN K. Super-twisting algorithm with time delay estimation for uncertain robot manipulators[J]. Nonlinear Dynamics, 2018:1-13. [11] HA W, BACK J. A disturbance observer-based robust tracking controller for uncertain robot manipulators[J]. International Journal of Control Automation & Systems, 2018(11): 1-9. [12] WANG H, LI H. Adaptive control of robot manipulators with uncertain kinematics and dynamics[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 948-954. [13] GENERAL I, ALBSA N. Adaptive neural output feedback control for uncertain robot manipulators with input saturation[J]. Complexity, 2017, 2017(6): 1-12. [14] SUN W, HE W. Fuzzy logic control of an uncertain robot with output constraint[C]// Chinese Association of Automation. China: IEEE, 2017. 67-72. [15] 龚星如, 沈建新, 田威,等. 工业机器人的绝对定位误差模型及其补偿算法[J]. 南京航空航天大学学报, 2014, 44(b04): 60-64. GONG X R,SHEN J X ,TIAN W .Absolute positioning error model of industrial robot and its compensation algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(b04): 60-64. [16] HUNG N V Q, TUAN H D, NARIKIYO T, et al. Adaptive control for nonlinearly parameterized uncertainties in robot manipulators[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 458-468. [17] 钟斌. 不确定关节机器人模型的神经网络补偿自适应控制[J]. 机械科学与技术, 2017, 36(3): 372-377. ZHONG B. Neural network compensation adaptive control for uncertain joint robot model [J]. Journal of Mechanical Engineering and Technique, 2017, 36(3): 372-377. [18] 雷霆, 张国良, 汤文俊,等. 不确定性自由漂浮空间机器人神经自适应控制[J]. 计算机工程与应用, 2016, 52(8): 29-32. LEI T, ZHANG G L, TANG W J, et al. Neural network self-adaptive control for uncertain free-floating space robots [J]. Computer Engineering and Applications, 2016, 52(8): 29-32. [19] 唐传胜, 李忠敏, 李超. 基于干扰补偿的不确定机器人鲁棒滑模跟踪控制[J]. 组合机床与自动化加工技术, 2016(7): 99-101. TANG C S, LI Z M, LI C. Uncertain robot robust sliding mode tracking control based on disturbance compensation[J]. Combined Machine Tool & Automation, 2016(7): 99-101. [20] ZHOU Q, WANG L, WU C. Adaptive fuzzy control for nonstrict-feedback systems with input saturation and output constraint[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 47(1): 1-12. [21] 彭文东. 力矩受限的机器人组合非线性反馈控制[D]. 上海:上海交通大学, 2009 PENG W D. Torque constrained robotic combination nonlinear feedback control [D]. Shanghai: Shanghai Jiaotong University, 2009 [22] 彭文东, 苏剑波. 基于组合非线性反馈技术的机器人控制方法[J]. 高技术通讯, 2010, 19(6): 591-595. PENG W D, SU J B. Robot control method based on combined nonlinear feedback technology [J]. High Technology Letters, 2010, 19(6): 591-595. [23] 刘金琨. 机器人控制系统的设计与MATLAB仿真[M]. 北京:清华大学出版社, 2013: 222-225. LIU J K. Design of robot control system and MATLAB simulation-advanced design method[M]. Beijing: Tsinghua University Press, 2013: 222-225. [24] 娄军强, 魏燕定, 杨依领. 智能柔性机械臂的建模和振动主动控制研究[J]. 机器人, 2014(5): 552-559. LOU J Q, WEI Y D, YANG Y L. Modeling and active vibration control of intelligent flexible manipulator. [J]. robot, 2014 (5): 552-559. [25] 李二超, 李战明. 基于力矩信息的面向位控机器人的阻抗控制[J]. 控制与决策, 2016, 31(5): 957-960. LI E C, LI Z M. Impedance control of position-oriented robot based on torque information [J]. Control and Decision, 2016, 31(5): 957-960.

PDF(1080 KB)

Accesses

Citation

Detail

段落导航
相关文章

/