磁流变弹性体隔振器隔振控制与实验研究

马伟佳,黄学功,汪辉兴,张广,王炅

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 118-122.

PDF(1120 KB)
PDF(1120 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 118-122.
论文

磁流变弹性体隔振器隔振控制与实验研究

  • 马伟佳,黄学功,汪辉兴,张广,王炅
作者信息 +

Vibration isolation control and an experimental study of magnetorheological elastomer isolators

  • MA Weijia,HUANG Xuegong,WANG Huixing,ZHANG Guang,WANG Jiong
Author information +
文章历史 +

摘要

为了更好地对磁流变弹性体隔振器的隔振性能及其控制策略进行研究。通过基于扫频激励的实验测试了磁流变弹性体隔振器的移频特性,证明了磁流变弹性体隔振器具有较宽的移频范围。基于磁流变弹性体隔振器的移频特性,提出了针对扫频激励的on-off控制策略。使用了基于变阻尼、变刚度的on-off控制策略,并将其应用于简谐激励和随机激励。通过实验研究证明,在控制策略的控制下,磁流变弹性体隔振器对于不同的激励形式都有着很好的隔振效果。该研究可以为磁流变弹性体隔振器的工程应用奠定基础。

Abstract

In order to study the vibration isolation performance and control strategy of a magnetorheological elastomer isolator.The frequency shift characteristic of a magnetorheological elastomer isolator was tested by experiments based on sweep excitation.It is proved that the magnetorheological elastomer isolator possesses a wide frequency shift range.Based on the frequency shift characteristic curve of the magnetorheological elastomer isolator, an on-off control strategy for sweeping excitation was proposed.The on-off control strategy based on variable damping and stiffness was applied to harmonic and random excitation.The experimental results prove that the magnetorheological elastomer isolator has great vibration isolation effect for different forms of excitation under control strategy.The above works lay a foundation for the engineering application of magnetorheological elastomer isolators.

关键词

磁流变弹性体(MRE)隔振器 / 移频特性 / 扫频激励 / 简谐激励 / 随机激励 / on-off控制策略 / 隔振实验

Key words

magnetorheological elastomer(MRE) isolator / frequency shift characteristic / sweeping excitation / harmonic excitation / random excitation / on-off control strategy / vibration isolation experiment

引用本文

导出引用
马伟佳,黄学功,汪辉兴,张广,王炅. 磁流变弹性体隔振器隔振控制与实验研究[J]. 振动与冲击, 2020, 39(8): 118-122
MA Weijia,HUANG Xuegong,WANG Huixing,ZHANG Guang,WANG Jiong. Vibration isolation control and an experimental study of magnetorheological elastomer isolators[J]. Journal of Vibration and Shock, 2020, 39(8): 118-122

参考文献

[1] Bazinenkov A M, Mikhailov V P. Active and Semi Active Vibration Isolation Systems Based on Magnetorheological Materials ☆[J]. Procedia Engineering, 2015, 106:170-174. [2] Cunningham D, Davis P. A multiaxis passive isolation system for a magnetic bearing reaction wheel[J]. Advances in the Astronautical Sciences, 1993, 95:80426. [3] Housner G W, Bergman L A, Caughey T K, et al. Structural Control: Past, Present, and Future[J]. Journal of Engineering Mechanics, 1997, 123(9):897-971. [4] 杜光磊, 复合型磁流变弹性体隔振器设计及其控制系统研究[D]. 南京理工大学, 2017. DU Guanglei, Research on design and control system of composite magnetorheological elastomer isolator[D]. Nanjing University of Science and Technology, 2017. [5] Davis C L, Lesieutre G A. AN ACTIVELY TUNED SOLID-STATE VIBRATION ABSORBER USING CAPACITIVE SHUNTING OF PIEZOELECTRIC STIFFNESS[J]. Journal of Sound & Vibration, 2000, 232(3):601-617. [6] Popp K M, Zhang X Z, Li W H, et al. MRE properties under shear and squeeze modes and applications[C]// 2009:012095. [7] Li W, Yang Z, Tian T. Viscoelastic properties of MR elastomers under harmonic loading[M]// Faculty of Engineering - Papers. 2010:733-740. [8] 黄学功, 刘春, 王炅,等. 硅橡胶基磁流变弹性体相对磁导率研究[J]. 功能材料, 2016, 47(2):2143-2147. HUANG Xuegong, LIU Chun, WANG Jiong, et al. Research on the relative permeability of magnetorheological elastomer based on silicone rubber[J]. Journal of Functional Materials, 2016, 47(2):2143-2147. [9] Xu Z, Gong X, Liao G, et al. An Active-damping-compensated Magnetorheological Elastomer Adaptive Tuned Vibration Absorber[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(10):1039-1047. [10] Carlson J D, Jolly M R. MR fluid, foam and elastomer devices[J]. Mechatronics, 2000, 10(4):555-569. [11] Chen L, Gong X L, Li W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers[J]. Smart Materials & Structures, 2007, 16(6):2645-2650(6). [12] Li Y, Li J, Tian T, et al. Corrigendum: A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control (2013 Smart Mater. Struct. 22 095020)[J]. Smart Materials & Structures, 2014, 23(12):129501. [13] Ginder J M, Schlotter W F, Nichols M E. Magnetorheological elastomers in tunable vibration absorbers[J]. Proc Spie, 2001, 4331:103-110. [14] Ni Z C, Gong X L, Li J F, et al. Study on a Dynamic Stiffness-tuning Absorber with Squeeze-strain Enhanced Magnetorheological Elastomer[J]. Journal of Intelligent Material Systems & Structures, 2009, 20(10):1195-1202. [15] 夏永强, 余淼, 刘胜龙. 磁流变弹性体隔振缓冲器设计及实验研究[J]. 振动与冲击, 2010, 29(9):196-200. XIA Yongqiang, YU Miao, LIU Shenglong. Design and experimental study of magnetorheological elastomer vibration isolator[J]. Journal of Vibration and Shock, 2010, 29(9):196-200. [16] Zhao L , Yu M , Fu J , et al. A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment: design and verification[J]. Smart Material Structures, 2017, 26(4):047001. [17] 刘春. 复合工况用磁流变弹性体及其智能隔震器设计研究[D]. 南京理工大学, 2016. LIU Chun. Design and research of magnetorheological elastomers and smart isolators for composite working conditions[D]. Nanjing University of Science and Technology, 2016. [18] Liu Y, Matsuhisa H, Utsuno H. Semi-active vibration isolation system with variable stiffness and damping control[J]. Journal of Sound & Vibration, 2008, 313(1):16-28. [19] Nagarajaiah S, Asce M and Sonmez E 2007 Structures with semiactive variable stiffness single/multiple tuned mass dampers Journal of Structural Engineering 133 67-77 [20] Liao G J, Gong X L, Xuan S H, et al. Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer[J]. Journal of Intelligent Material Systems & Structures, 2012, 23(1):25-33.

PDF(1120 KB)

560

Accesses

0

Citation

Detail

段落导航
相关文章

/