静电力非线性对双检测微陀螺谐振频率及灵敏度稳定性的影响

郝淑英1,2,3,李伟雄1,2,3,李会杰1,2,3,张琪昌4,5,冯晶晶1,2,3,张昆鹏1,2,3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 136-142.

PDF(1377 KB)
PDF(1377 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 136-142.
论文

静电力非线性对双检测微陀螺谐振频率及灵敏度稳定性的影响

  • 郝淑英1,2,3,李伟雄1,2,3,李会杰1,2,3,张琪昌4,5,冯晶晶1,2,3,张昆鹏1,2,3
作者信息 +

Effect of electrostatic force nonlinearity on resonant frequency and sensitivity stability of double sense-mode micro gyroscopes

  • HAO Shuying1,2,3,LI Weixiong1,2,3,LI Huijie1,2,3,ZHANG Qichang4,5,FENG Jingjing1,2,3,ZHANG Kunpeng1,2,3
Author information +
文章历史 +

摘要

为探究如何避免静电力非线性的影响或利用高电压下的静电力非线性和微梁几何非线性对冲以实现高稳定性和高灵敏度微陀螺的设计。考虑边缘效应下的静电力非线性和刚度立方非线性同时存在时,结构参数对双检测微陀螺动力学性能的影响规律;研究表明,梳齿未交叠长度越小,直流偏置电压越大,则共振频率偏移量越大,静电力的软化效果也越显著;梳齿未交叠长度存在一阀值,大于此值时静电力非线性弱化为零且对幅值的影响存在饱和现象,利用此特性可保持灵敏度的稳定性。通过微梁几何非线性的设计和控制调节驱动刚度非线性导致的硬化特性来平衡静电力带来的软化特征,使幅频曲线呈现理想的线性状态,避免了因硬化、软化特性造成的频率失稳和振幅跳跃现象的发生,同时也获得了较高的灵敏度和稳定性。

Abstract

Abstract:To avoid the influence of electrostatic forces nonlinearity,this article applied the offset of nonlinearity at high voltage and microbeam geometrical nonlinearity to achieve high stability and sensitivity in micro gyroscope’s design.Moreover, The regularities of structural parameters on the dynamic performance of the dual-detection micro-gyro were simultaneously investigated when the nonlinearity of the electrostatic force and the stiffness-cubic nonlinearity both existed under the edge effect.It was shown that the smaller comb-finger non-overlapping length and the greater the DC bias voltages, the greater resonance frequency offsets and the more obvious the effect of electrostatic force softening will be produced.There is a threshold value for non-overlapping length of comb-fingers.Above this value, the nonlinearity weakens to zero and the effect on the amplitude is saturated.This feature could maintain sensitivity’s stability of the double sense-mode micro gyroscope.The softening characteristics from the electrostatic force are balanced by microbeam’s geometrically nonlinear design and the adjustment of hardening characteristics caused by stiffness nonlinearity.The amplitude-frequency curve shows an ideal linear state.The phenomenon of frequency instability and amplitude jump caused by the hardening and softening of electrostatic force is avoided, and the micro-gyro has higher sensitivity and stability.

关键词

边缘效应 / 静电力非线性 / 刚度立方非线性 / 双检测微陀螺 / 灵敏度

Key words

edge effect / electrostatic force nonlinearity / stiffness cubic nonlinearity / double sense-mode micro gyroscope / sensitivity

引用本文

导出引用
郝淑英1,2,3,李伟雄1,2,3,李会杰1,2,3,张琪昌4,5,冯晶晶1,2,3,张昆鹏1,2,3. 静电力非线性对双检测微陀螺谐振频率及灵敏度稳定性的影响[J]. 振动与冲击, 2020, 39(8): 136-142
HAO Shuying1,2,3,LI Weixiong1,2,3,LI Huijie1,2,3,ZHANG Qichang4,5,FENG Jingjing1,2,3,ZHANG Kunpeng1,2,3. Effect of electrostatic force nonlinearity on resonant frequency and sensitivity stability of double sense-mode micro gyroscopes[J]. Journal of Vibration and Shock, 2020, 39(8): 136-142

参考文献

[1] 李志宏. 微纳机电系统 (MEMS/NEMS) 前沿[J]. 中国科学: 信息科学, 2012, 42(12): 1599-1615. LI Zhi-hong. Emerging technologies of micro nanoelectromechanical systems(MEMS/NEMS)[J]. Science China Press, 2012, 42(12): 1599-1615. [2] 陈宏. 全对称双级解耦微机械振动式陀螺研究[D]. 哈尔滨:哈尔滨工业大学, 2008. CHEN Hong. Fully-symmetrical and doubly-decoupled micromachined gyroscope[D]. Harbin: Harbin Institute of Technology, 2008. [3] Braghin F, Resta F, Leo E. Nonlinear dynamics of vibrating MEMS[J]. Sensors & Actuators A Physical, 2007, 134 (1): 98-108. [4] 高嵘. 计入空气阻尼的MEMS微谐振器非线性动力学研究[J].传感器学报, 2006, 19(5): 1355-1357. GAO Rong. Nonlinear dynamic study of micro-resonator including viscous air damping[J]. Chinese Journal of sensors and actuators, 2006, 19(5): 1355-1357. [5] Ke L L, Wang Y S. Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory[J]. Physica E, 2011, 43(5): 1031-1039. [6] Zhang W M, Meng G. Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation[J]. IEEE Sensors Journal, 2007, 7(3): 370-380. [7] Zhang W M, Meng G, Chen D. Stability, nonlinearity and reliability of electrostatically actuated MEMS devices[J]. Sensors. 2007, 7(5): 760-796. [8] Ke L L, Wang Y S, Yang J, Kitipornchai S. Nonlinear free vibration of size-dependent functionally graded microbeams[J]. Int. J. Eng. Sci. 2012, 50(1): 256-267. [9] Beek J V, Puers R. A review of MEMS oscillators for frequency reference and timing applications[J]. Journal of Micromechanics & Microengineering, 2012, 22(1): 013001. [10] Xu J, Tsai J M. A process-induced-frequency-drift resilient 32 kHz MEMS resonator[J]. Journal of Micromechanics & Microengineering. 2012, 22(10): 430-435. [11] Liu R, Paden B, Turner K. MEMS resonators that are robust to process induced-feature width variations[J]. Frequency Control Symposium and PDA Exhibition. 2001, 11(5): 556-563. [12] 雷建华. 极板间距对平行板电容边缘效应的影响研究[J]. 电脑与电信,2013, (7): 57-58. LEI Jian-hua. Influence of plate spacing on capacitive edge effect[J]. Computer & Telecommunication, 2013,(7):57-58. [13] 许立,董林玺,王威. 静电梳齿结构横向间隙的边缘效应分析[J].传感器与微系统,2010, 29(8): 26-28. XU Li, DONG Lin-xi, WANG Wei. Lateral gap’s fringe effect analysis of electrostatic comb structure[J]. Transducer and Microsystem Technologies, 2010, 29(8): 26-28. [14] 梁新建,郑旭东,李丹东. 一种基于高线性度弓形支撑梁的新型MEMS陀螺设计[J].导航与控制,2011, 10(3): 49-53. LIANG Xin-jian, ZHENG Xu-dong, LI Dan-dong. A novel design of MEMS gyroscope based on high linearity bow-shaped beam[J]. Navigation and Control, 2011, 10(3): 49-53. [15] 王浩,陈伟平. 双解耦双自由度微机械陀螺的设计与仿真[D]. 哈尔滨:哈尔滨工业大学, 2007: 1-71. WANG Hao, CHEN Wei-ping. Design and simulation of 2-decoupled and 2-DOF micromachined gyroscope[D]. Harbin: Harbin Institute of Technology, 2007: 1-71. [16] 文永蓬,尚慧琳. 微陀螺动力学建模与非线性分析[J].振动与冲击, 2015, 34(4): 70-73. WEN Yong-peng, SHANG Hui-lin. Dynamic modeling and nonlinear analysis for a microgyroscope[J]. Journal of Vibration and Shock, 2015, 34(4): 70-73. [17] NAN C T, CHUNG Y S. Stability and resonance of micro-machined gyroscope under nonlinearity effects[J]. Nonlinear Dynamics, 2009, 56(4): 369-379. [18] 赵 剑,王洪喜,贾建援. 计及边缘效应的静电驱动微结构静电力计算[J]. MEMS器件与技术, 2006, 2(6): 97-111. ZHAO Jian, WANG Hong-xi, JIA Jian-yuan. Computation of electrostatic forces with edge effects for micro-structures[J]. MEMS Device & Technology, 2006, 2(6): 97-111. [19] 尚慧琳,张涛,文永蓬. 参数激励驱动微陀螺系统的非线性振动特性研究[J].振动与冲击, 2017, 36(1): 103-107. SHANG Hui-lin, ZHANG Tao, WEN Yong-peng. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation[J]. Journal of Vibration and Shock, 2017, 36(1): 103-107. [20] Ding X K, Li H S, Ni Y F. Control methods for drive mode of MEMS vibratory gyroscope with spring hardening nonlinearity[J]. Journal of Chinese Inertial Technology, 2015, 23 (3):379-384. [21] 郝淑英,冯海茂,范孜. 覆冰输电线非线性瞬时固有频率研究[J].工程力学, 2013, 30(09): 283-287. HAO Shu-ying, FENG Hai-mao, FAN Zi. Investigation of nonlinear transient natural frequency of iced transmission line[J]. Engineering Mechanics, 2013, 30(09): 283-287. [22] Wang W, Lv X, Xu D. Design of multi-degree-of-freedom micromachined vibratory gyros cope with double sense-modes[J]. Measurement, 2014, 58: 6-11.

PDF(1377 KB)

Accesses

Citation

Detail

段落导航
相关文章

/