大跨度悬索桥涡激振动动态监控预测

张勇1,曹素功1,2,马如进2,田浩1,3,胡皓1,徐世桥2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 143-150.

PDF(2096 KB)
PDF(2096 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 143-150.
论文

大跨度悬索桥涡激振动动态监控预测

  • 张勇1,曹素功1,2,马如进2,田浩1,3,胡皓1,徐世桥2
作者信息 +

Dynamic monitoring and prediction for vortex induced vibration of a sea crossing bridge

  • ZHANG Yong1,CAO Sugong1,2MA Rujin2,TIAN Hao1,3,HU Hao1,XU Shiqiao2
Author information +
文章历史 +

摘要

大跨度悬索桥的涡激振动发生频率较高,严重时将影响到行车安全性和舒适度。为了能及时预测大跨度悬索桥的涡激振动,以某跨海大桥为例,依托其结构监测系统长期监测数据,选取了顺风向平均风速、风向角、能量集中系数以及加速度均方根(RMS)作为涡激振动发生的特征参数,根据特征参数与涡激振动的相关性,构造了跨海大桥涡激振动的动态监控预测模型,建立了独立的涡激振动动态监控系统。结果表明:涡振发生时风向角主要分布在300°~330°与120°~150°;能量集中系数(功率谱密度之比WP2/WP1)小于0.1;主桥振动加速度均方根值大于5 cm/s2;构造的系统模型预测识别率达到72%,建立的涡激振动动态监控系统识别准确率达到93%,同时开发了涡激振动预警App,实际预警效果良好,可为同类型桥梁的涡激振动预测提供借鉴。
 
 

Abstract

Abstract:Vortex-induced vibration of long-span suspension bridges occurs frequently, which seriously affects driving safety and comfort.In order to predict the vortex induced vibration of a long-span suspension bridge in time, a cross sea bridge was taken as an example.Based on the long-term monitoring data of a structural monitoring system, wind velocity, wind direction angle, energy concentration coefficient and acceleration RMS were selected as the characteristic parameters of vortex induced vibration.According to the correlation between the characteristic parameters and the vortex excited vibration, a dynamic monitoring and prediction model of vortex-induced vibration of a cross-sea bridge was constructed, and an independent dynamic monitoring and control system of vortex-induced vibration was established.The results show that: the wind direction is mainly between 300°—330°and 120°—150°, and the energy concentration coefficient (the ratio of power spectral density WP2/WP1) is less than 0.1; the acceleration RMS of the main bridge is more than 5 cm/s2; the prediction recognition rate of the system model is 72%, and the identification accuracy of the vortex induced vibration dynamic monitoring system is 93%.At the same time, the vortex-induced vibration early warning app which is perfectly useful for work has been developed, and it can provide reference for the prediction of vortex-induced vibration of similar bridges.
 
 

关键词

跨海大桥
/ 能量集中系数 / 特征参数 / 加速度均方根值(RMS) / 预测模型 / 预警App

Key words

cross sea bridge
/ energy concentration factor / characteristic parameter / acceleration root mean square(RMS) value / prediction model / early warning App

引用本文

导出引用
张勇1,曹素功1,2,马如进2,田浩1,3,胡皓1,徐世桥2. 大跨度悬索桥涡激振动动态监控预测[J]. 振动与冲击, 2020, 39(8): 143-150
ZHANG Yong1,CAO Sugong1,2MA Rujin2,TIAN Hao1,3,HU Hao1,XU Shiqiao2. Dynamic monitoring and prediction for vortex induced vibration of a sea crossing bridge[J]. Journal of Vibration and Shock, 2020, 39(8): 143-150

参考文献

[1] Shanwu Li, Shujin Laima, Hui Li. Cluster analysis of winds and wind-induced vibrations on a long-span bridge based on long-term field monitoring data[J]. Engineering Structures. 2017,138:245-259.
[2] Hui Li, Shujin Laima, Qiangqiang Zhang,et al.Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2014,124:54-67.
[3] Shanwu Li, Shujin Laima, Hui Li.Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018,172:196-211.
[4] Hui Li, Shujin Laima, Jinping Ou,et al..Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011,33 (6):1894-1907.
[5] Le-Dong Zhu, Xiao-Liang Meng, Lin-Qing Du,et al. A Simplified Nonlinear Model of Vertical Vortex-Induced Force on Box Decks for Predicting Stable Amplitudes of Vortex-Induced Vibrations[J].Engineering, 2017,3(6):854-862.
[6] Kun Xu, Lin Zhao, Yaojun Ge. Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges[J].Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167:228-241.
[7] 李欢,何旭辉,王汉封,等.π型断面超高斜拉桥涡振减振措施风洞试验研究[J]. 振动与冲击, 2018, 37(7): 62-68.
LI Huan,HE Xu-hui,WANG Han-feng,et al Wind tunnel tests for vortex-induced vibration control measures of a super high cable-stayed bridge with π-cross section[J].Journal of Vibration and Shock,2018,37(7): 62-68.
[8] 杨瑞.桥梁主梁涡激振动理论预测模型研究[D].湖南大学,2011.
YANG Rui. Study on prediction model of vortex-induced vibration of bridge engineering[D]. Hunan University,2011, in Chinese.
[9] 李加武,张国强,张波.钢桥塔涡激共振振幅允许值确定研究[J].中国公路学报,2014,27(03):45-50.
LI Jia-wu,ZHANG Guo-qiang,ZHANG Bo, Study on Determination of Allowable Amplitude of Vortex-induced Resonance of Steel Bridge Towers [J].China Journal of Highway and Transport, 2014,27(03):45-50.
[10] 陈政清,黄智文.大跨度桥梁竖弯涡振限值的主要影响因素分析[J].中国公路学报,2015,28(09):30-37.
CHEN Zheng-qing, HUANG Zhi-wen. Analysis of Main Factors Influencing Allowable Magnitude of Vertical Vortex-induced Vibration of long-span Bridge [J].China Journal of Highway and Transport, 2015,28(09):30-37.
[11] 赖马树金.大跨度悬索桥分离式双箱梁涡激振动研究[D].哈尔滨工业大学,2013.
LAIMA Shu-jin. Investigation of vortex-induced vibrations of twin-box girder of long-span brdges[D] Harbin Institute of Technology,2013. in Chinese.

PDF(2096 KB)

Accesses

Citation

Detail

段落导航
相关文章

/