依据哈密顿原理获得了三交叉弦结构非线性自由振动的运动方程,并应用摄动法推导了自振频率下的一阶摄动解。相较于传统的单根弦线非线性振动运动方程多采用单三角级数,三交叉弦结构首次采用三重三角级数解法并成功获取一阶摄动解。通过分析表明,非线性自振频率的解析解除了具有典型的非线性特性,还体现了各个子结构参数变化对整体结构自振频率的影响,即存在子结构间的耦合特性。结果表明,整个结构与局部子结构在子结构自身因参数发生改变时,变化幅度之间不是线性关系,且整体结构小于子结构自身因参数改变的变化幅度。
Abstract
Abstract:Theoretical analysis on the nonlinear free vibration of a tri-cross string system was presented in this work, which is an element of space net-antennas.The governing equations were derived from the Hamilton’s principle and a linearized solution was obtained by the standard perturbation method.The semi-analytical solutions of the governing equations has not been provided referring to the solution of the plate vibrating problem.This analysis reveals that natural frequencies of the tri-cross string depend on the vibration amplitude due to geometrical nonlinearity in the constitutive equation.The geometric parameters, such as the diameters and the lengths of the constituent strings, also affect the frequency through the nonlinearity of the tri-cross string.The nonlinear natural frequency shows coupled characteristic, i.e. the natural frequency of the tri-cross string varies with that of the constituent strings, but the contribution of each constituent string to the natural frequency is in different proportions.
关键词
三交叉弦 /
非线性 /
解析解 /
摄动方法
{{custom_keyword}} /
Key words
tri-cross string /
nonlinearity /
perturbation method /
coupling effect
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 潘渤, 尚福林.十字弦结构非线性自由振动的频率分析[J]. 工程力学,2012,29(11): 26-32.
Pan Bo, Shang Fulin. Frequency analysis of nonlinear free vibration of a cross string[J]. Engineering Mechanics, 2012, 29(11): 26-32.
[2] Chen L, Ding H. Two nonlinear models of a transversely vibrating string[J]. Archive of Applied Mechanics, 2008,78: 321-328.
[3] Leissa AW, Saad AM. Large amplitude vibrations of strings[J]. ASME Journal of Appied Mechanics, 1994, 61(2): 296-331.
[4] 陈立群. 轴向运动弦线横向非线性振动的能量和守恒[J]. 振动与冲击,2002, 21(2): 81-82.
Chen Liqun. Energy and conservation function for transverse nonlinear vibration of an axially moving string [J]. Journal of Vibration and Shock, 2002, 21(2): 81-82.
[5] Ram YM, Caldwell JC. Free vibration of a string with moving boundary conditions by the method of distorted images[J]. Journal of Sound and Vibration, 1996, 194(1): 35-47.
[6] Terumichi Y, Ohtsuka M, Yoshizawa M, Fukawa Y, Tsujioka Y. Nonstationary vibrations of a string with time-varying length and a mass-spring system attached at the lower end[J]. Nonlinear Dynamics, 1997, 12(1): 39-55.
[7] Ahn J. A vibrating string with dynamic frictionless impact[J]. Applied Numerical Mathematics. 2007, 57(8): 861–884.
[8] Khadem SE, Rezaee MR. Non-linear free vibration analysis of a string under bending moment effects using the perturbation method[J]. Journal of Sound Vibration, 2002, 254(4): 677-691.
[9] 姜雄, 楼文娟. 三自由度体系覆冰导线舞动激发机理分析的矩阵摄动法[J]. 振动工程学报,2016, 29(6): 1070-1078.
Jiang Xiong, Lou Wenjuan. Matrix perturbation method for analysis of 3 DOF iced transmission line galloping mechanism[J]. Journal of Vibration Engineering, 2016, 29(6): 1070-1078.
[10] 徐伟华, 刘济科. 阻尼系统振动分析的复模态矩阵振动法[J]. 中山大学学报(自然科学版),1998,37(4): 50-54.
Xu Weihua, Liu Jike. Matrix perturbation method of complex modes in vibration analysis of damped system[J]. Acta Scientiarum Naturalium Univeristitatis Sunyatseni, 1998, 37(4): 50-54.
[11] Tanaka H. Design optimization studies for large-scale contoured beam deployable satellite antennas[J]. Acta Astronauta, 2006, 58(9): 443-451.
[12] Tanaka H. Surface error measurements of reconfigurable antennas based on antenna gain analyses[J]. Transactions of the Japan Society for Aeronautical & Space Sciences Space Technology Japan, 2008, 7(1): 19-25.
[13] Wang CG, Xia ZM, Tan HF. Initial shape design and stability analysis of rib for inflatable deployable reflector[J]. AIAA Journal, 2015, 53(2): 486-492.
[14] Cai TL, Mukherjee RJ, Diaz Alejandro R. Vibration suppression in a simple tension-aligned array dtructure. AIAA Journal, 2014, 52(2): 504-515.
[15] 杨鑫, 陈海波. 热冲击作用下轴向运动梁的振动特性研究[J]. 振动与冲击,2017, 36(1): 8-15.
Yang Xin, Chen Haibo. Vibration characteristics of an axially moving beam under thermal shocks[J]. Journal of Vibration and Shock, 2017, 36(1): 8-15.
[16] 张宇飞, 王延庆, 闻邦椿. 浸液轴向运动板的非线性自由振动和内共振分析[J]. 振动与冲击, 2017, 36(18): 36-42.
Zhang Yufei,Wang Yanqing, Wen Bangchun. Analysis on the nonlinear free vibration and internal responce of axially moving plates immersed in liquid. Journal of Vibration and Shock, 2017, 36(18): 36-42.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}