基于格子-大涡理论的高频换向阀压力特性研究

吴万荣1,龙果锐1,郝前华1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 202-207.

PDF(1566 KB)
PDF(1566 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 202-207.
论文

基于格子-大涡理论的高频换向阀压力特性研究

  • 吴万荣1,龙果锐1,郝前华1,2
作者信息 +

A study on the pressure characteristic curve of a high frequency reversing valve based on the lattice Boltzmann method combined with LES

  • WU Wanrong1,LONG Guorui1,HAO Qianhua1,2
Author information +
文章历史 +

摘要

为揭示高频换向阀的阀口压力特性,降低压力损失,采用格子Boltzmann方法,并结合大涡理论模拟高雷诺数下的阀口流体流动。建立基于格子-大涡理论的高频换向阀格子模型,模拟阀不同尺寸参数下的阀口特性,得出进油腔体积和最大过流面积均对阀口压力有较大的影响,且对于一定的最大过流面积,开口度对阀口压力影响最大。结果表明格子Boltzmann方法具有准确、计算效率高等优点,可以应用于液压激振系统的分析研究。

Abstract

Abstract:In order to study the pressure characteristic curve of a high frequency reversing valve and reduce pressure loss, the lattice Boltzmann method (LBM) combined with large Eddy simulation (LES) was used to simulate high-Re flow.A lattice evolution model based on LBM-LES was established for high frequency reversing valve.The valve port characteristics under different size parameters of valve were simulated.It can be concluded that the volume of oil inlet chamber and the maximum flow area have great influence on the pressure of the valve port.For a certain maximum flow area, the opening has the greatest impact on the pressure of the valve.The results show that the LBM has the advantages of accuracy and high computational efficiency and so on.Thus it can be applied to the analysis and research of complex hydraulic exciting systems.

关键词

液压激振 / 格子Boltzmann方法(LBM) / 大涡理论(LES) / 高频换向阀 / 阀口特性

Key words

hydraulic excitation / lattice Boltzmann method(LBM) / large eddy simulation(LES) / high-frequency reversing valve / valve port features

引用本文

导出引用
吴万荣1,龙果锐1,郝前华1,2. 基于格子-大涡理论的高频换向阀压力特性研究[J]. 振动与冲击, 2020, 39(8): 202-207
WU Wanrong1,LONG Guorui1,HAO Qianhua1,2. A study on the pressure characteristic curve of a high frequency reversing valve based on the lattice Boltzmann method combined with LES[J]. Journal of Vibration and Shock, 2020, 39(8): 202-207

参考文献

[1] Abdalla M O, Nagarajan T, Fakhruldin M H. Numerical study of flow field and energy loss in hydraulic proportional control valve[C]// National Postgraduate Conference. IEEE, 2011:1-6. [2] Chattopadhyay H, Kundu A, Saha B K, et al. Analysis of flow structure inside a spool type pressure regulating valve[J]. Energy Conversion & Management, 2012, 53(1):196-204. [3] 朱成实, 陈寄贵. 基于AMESim电液换向阀动态特性仿真分析[J]. 沈阳化工大学学报, 2013, 27(1):54-57. ZHU Cheng-shi, CHEN Ji-gui. Simulation Analysis on the Dynamic Characteristics of Electro-hydraulic Valve Based on the AMESim[J]. Journal of Shenyang University of Chemical Technology, 2013, 27(1): 54-57. [4] 李彦浩, 程永光. 用多松弛格子Boltzmann方法模拟三维水击波[J]. 武汉大学学报(工学版), 2013, 46(4):417-422. LI Yan-Hao, CHENG Yong-Guang. Three-dimensional simulation of water hammer wave by multiple-relaxation-time lattice Boltzmann method[J]. Engineering Journal of Wuhan University, 2013, 46(4): 417-422. [5] 任晟, 张家忠, 张亚苗,等. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟[J]. 物理学报, 2014, 63(2):216-224. REN Sheng, ZHANG Jia-Zhong, ZHANG Ya-Miao, et al. Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method[J]. Acta Physica Sinica, 2014, 63(2): 216-224. [6] 李华兵. 晶格玻尔兹曼方法对血液流的初步研究[D]. 上海:复旦大学, 2004. LI Hua-Bingbin. Study of the blood flows by lattice Boltzmann method[D]. Shanghai: Fudan University, 2004. [7] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-格子Boltzmann通量求解法的椭圆柱流动特性分析[J]. 计算力学学报, 2018(3). WU Xiao-Di, LIU Hua-Ping, CHEN Fu. Numerical simulations of flow over isolated and two tandem elliptical cylinders by immersed boundary-lattice Boltzmann flux solver[J]. Chinese Journal of Computational Mechanics, 2018(3). [8] 周王军, 李勇, 何录武. 黏弹性流体扩展及收缩流动的格子Boltzmann模拟分析[J]. 力学季刊, 2018(2). ZHOU Wang-Jun, LI Yong, HE Lu-Wu. Simulation of Sudden Expansion and Contraction Flows for Viscoelastic Fluids Using the Lattice Boltzmann Method[J]. Chinese Quarterly of Mechanics, 2018(2). [9] Mohamad A A. Lattice Boltzmann method[M]. Springer London, 2011. [10] 张迪嘉, 姜继海. 插装型液压锥阀流场与气穴仿真研究[J].液压与气动, 2016. ZHANG Di-Jia, JIANG Ji-Hai. Simulation of Flow Field and Cavitation for Hydraulic Cartridge Cone Valve [J]. Chinaese Hydraulic & Pneumatics, 2016. [11] 刘祖斌, 赵鹏. 结合大涡模拟的格子玻尔兹曼方法模拟高雷诺数流动[J]. 船舶力学, 2015(5):484-492. LIU Zu-Bin, ZHAO Peng. High-Re flow simulation with Lattice Boltzmann method combined with LES[J]. Journal of Ship Mechanics, 2015(5):484-492. [12] Meyers J, Sagaut P. On the model coefficients for the standard and the variational multi-scale Smagorinsky model[J]. Journal of Fluid Mechanics, 2006, 569(569):287-319. [13] Lallemand P, Luo L S. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184(2):406-421.

PDF(1566 KB)

1518

Accesses

0

Citation

Detail

段落导航
相关文章

/