该研究展示了一种垂向动磁式压电振动能量收集器,利用垂向磁铁的非线性力改善了单一悬臂梁的收集性能;为了对该结构进行设计分析与参数优化,建立了集总参数理论模型,利用仿真对多种模式进行了研究。聚焦于低频排斥模式,利用实验开展进一步研究;使用铝合金与压电纤维材料MFC搭建了实验平台,并验证了系统的能量收集性能。实验结果表明,该结构能够有效优化能量收集性能,且在误差允许范围内,数值仿真可有效预测结构性质;基于仿真及实验,对结构中的磁铁间距及磁感应强度参数进行研究并进行了最优化,在最优化参数下带宽可提高40.6%,峰值功率可提高42.7%。
Abstract
In this paper, a vertical moving magnetic piezoelectric vibration energy harvester was presented.The performance of the single cantilever harvester was improved with the nonlinear force introduced by the vertical magnets.In order to carry out the analysis and parameter optimization of the structure, a lumped-parameter theoretical model was established, and various modes were studied via simulation.This paper focuses on the repulsive low-frequency mode, and future studies were carried out with experiments.An experimental platform was built with aluminum alloy and piezoelectric fiber material MFC, and the energy harvesting performance was verified.The experimental results show that the numerical simulation can effectively predict the performance within the error tolerance range, and the performance can be effectively improved by the structure.Based on simulations and experiments, the magnet spacing and magnetic flux density parameters were studied and optimized.Under the optimal parameters, the bandwidth can be increased by 40.6% and the peak power can be increased by 42.7%.
关键词
振动能量收集 /
压电 /
宽频带 /
磁铁
{{custom_keyword}} /
Key words
vibration energy harvesting /
piezoelectric /
broadband /
magnet
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Babayo A A, Anisi M H, Ali I. A Review on energy management schemes in energy harvesting wireless sensor networks[J]. Renewable & Sustainable Energy Reviews, 2017, 76:1176-1184.
[2] Sudevalayam S, Kulkarni P. Energy Harvesting Sensor Nodes: Survey and Implications[J]. IEEE Communications Surveys & Tutorials, 2011, 13(3):443-461.
[3] Ahmed R, Mir F, Banerjee S. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity[J]. Smart Materials & Structures, 2017, 26(8):085031.
[4] 孙洪鑫, 罗一帆, 杨国松,等. 电磁集能式调谐质量阻尼器的结构减震及能量收集分析[J]. 振动与冲击, 2017(15):51-56.
Sun H, Luo Y, Yang G, et al. A RETMD with performances of structural aseismic control and energy harvesting for a single-DOF structure[J]. Journal of Vibration & Shock, 2017, 36(15):51-56.
[5] Blokhina E, Galayko D. Towards autonomous microscale systems: Progress in electrostatic kinetic energy harvesting[C]// IEEE International Conference on Electronics, Circuits and Systems. IEEE, 2017:744-747.
[6] 孟爱华, 杨剑锋, 蒋孙权,等. 柱棒式超磁致伸缩能量收集器的设计与实验[J]. 振动与冲击, 2017, 36(12):175-180.
Meng A, Yang J, Jiang S, et al. Design and experiments of a column giant magnetostrictive energy harvester[J]. Zhendong Yu Chongji/journal of Vibration & Shock, 2017, 36(12):175-180.
[7] Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization[J]. Renewable & Sustainable Energy Reviews, 2017, 74:1-18.
[8] Siang J, Lim M H, Salman Leong M. Review of vibration‐based energy harvesting technology: Mechanism and architectural approach[J]. International Journal of Energy Research, 2018, 42(5): 1866-1893.
[9] Bartels R E, Scott R C, Allen T, et al. Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model[J]. Aiaa Journal, 2015.
[10] Twiefel J, Westermann H. Survey on broadband techniques for vibration energy harvesting[J]. Journal of Intelligent Material Systems & Structures, 2013, 24(11):1291-1302.
[11] Dechant E, Fedulov F, Fetisov L Y, et al. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting[J]. Applied Sciences, 2017, 7(12):1324.
[12] Sun S, Tse P W. Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH)[J]. Mechanical Systems & Signal Processing, 2019, 114:467-485.
[13] Ibrahim A, Towfighian S, Younis M I. Dynamics of transition regime in bistable vibration energy harvesters[J]. Journal of Vibration and Acoustics, 2017, 139(5): 051008.
[14] Challa V R, Prasad M G, Shi Y, et al. A vibration energy harvesting device with bidirectional resonance frequency tunability[J]. Smart Materials & Structures, 2008, 17(1):15035-15010.
[15] Challa V R, Prasad M G, Fisher F T. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications[J]. Smart Materials & Structures, 2011, 20(2):25004-25011.
[16] Zhang G C, Chen L Q, Ding H. Forced vibration of tip-massed cantilever with nonlinear magnetic interactions[J]. International Journal of Applied Mechanics, 2014, 6(02): 1450015.
[17] Zhang G C, Chen L Q, Li C P, et al. Primary resonance of coupled cantilevers subjected to magnetic interaction[J]. Meccanica, 2017, 52(4-5):1-17.
[18] Firoozy P, Khadem S E, Pourkiaee S M. Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam[J]. International Journal of Engineering Science, 2017, 111:113-133.
[19] Tang L, Yang Y. A nonlinear piezoelectric energy harvester with magnetic oscillator[J]. Applied Physics Letters, 2012, 101(9): 094102.
[20] Abdelkefi A, Barsallo N. Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters[J]. Nonlinear Dynamics, 2016, 83(1-2):1-16.
[21] Vokoun D, Beleggia M, Heller L, et al. Magnetostatic interactions and forces between cylindrical permanent magnets[J]. Journal of Magnetism & Magnetic Materials, 2009, 321(22):3758-3763.
[22] Erturk A, Inman D J. On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters[J]. Journal of Intelligent Material Systems & Structures, 2008, 19(19):1311-1325.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}