无风环境下振动薄平板断面的非线性气动效应研究

应旭永1,2,张哲3

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 239-244.

PDF(1428 KB)
PDF(1428 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 239-244.
论文

无风环境下振动薄平板断面的非线性气动效应研究

  • 应旭永1,2,张哲3
作者信息 +

A study on nonlinear aerodynamic effect of a vibrating thin plate section in windless condition

  • YING Xuyong1,2, ZHANG Zhe3
Author information +
文章历史 +

摘要

基于随机拉格朗日-欧拉(ALE)法和弱耦合方法,建立了断面风振响应计算的数值模型。提出了无风环境下振动断面的气动力数学表达式,模拟了薄平板断面在无风环境下的自由振动响应,进而计算了断面的非线性振动频率和阻尼比。结果表明:提出的气动力模型能够有效的描述无风环境下作用在振动断面上的非定常气动力;无风环境下振动中的主梁断面,竖向振动比扭转振动对周围空气的干扰作用更大;若忽略无风环境下的气动效应,将会带来一定的误差;初始激励对无风环境下主梁断面的气动效应有较大的影响。

Abstract

Based on an arbitrary lagrange-euler (ALE) method and a weak coupled method, a numerical model for calculating the wind-induced response of section was developed.The mathematical expression of aerodynamic forces for vibrating section in windless condition is proposed.The free vibration response of a thin plate section in windless condition was simulated, and the nonlinear vibration frequency and damping ratio were calculated.The results indicate that the unsteady aerodynamic forces acting on vibrating section in windless condition can be effectively described by the presented aerodynamic force model.For the vibrating section in windless condition, the interference to the ambient air for the vertical motion is larger than that for torsional motion.The aerodynamic effect of vibrating section in windless condition cannot be neglected; otherwise, the error will be increased.The free vibration response of thin plate section in windless condition is significantly influenced by initial excitation.

关键词

无风环境 / 薄平板断面 / 非线性气动效应 / 计算流体力学(CFD)

Key words

windless condition / thin plate section / nonlinear aerodynamic effect / computer fluid dynamics(CFD)

引用本文

导出引用
应旭永1,2,张哲3. 无风环境下振动薄平板断面的非线性气动效应研究[J]. 振动与冲击, 2020, 39(8): 239-244
YING Xuyong1,2, ZHANG Zhe3. A study on nonlinear aerodynamic effect of a vibrating thin plate section in windless condition[J]. Journal of Vibration and Shock, 2020, 39(8): 239-244

参考文献

[1] 刘高, 刘天成. 分体式钝体双箱钢箱梁斜拉桥节段模型风洞试验研究[J]. 土木工程学报, 2010(s2): 49-54. Liu, G., Liu, T.C. Sectional model wind tunnel test of a cable-stayed bridge with separeted bluff steel twin-box girder [J]. China Civil Engineering Journal, 2010(s2): 49-54. [2] 陈政清, 牛华伟, 刘志文. 平行双箱梁桥面颤振稳定性试验研究[J]. 振动与冲击, 2006, 25(6): 54-58. Chen, Z.Q., Niu, H.W., Liu, Z.W. Experimental Study on Flutter Stability of Parallel Box-Girder Bridges [J]. Journal of Vibraion and Shock, 2006, 25(6): 54-58. [3] Lee, B.H.K., LeBlanc, P. Flutter analysis of a two-dimensional airfoil with cubic nonlinear restoring force [J]. Aeronautical Note NAE-AN-36, NRC No. 26438, National Research Council Canada, 1986. [4] Gao, G.Z., Zhu, L.D. Nonlinearity of mechanical damping and stiffness of a spring-suspended sectional model system for wind tunnel tests [J]. Journal of Sound & Vibration, 2015, 355:369-391. [5] Cao, F.C., Ge, Y.J. Air-induced nonlinear damping and added mass of vertically vibrating bridge deck section models under zero wind speed [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 169: 217-231. [6] 李永乐, 朱佳琪, 唐浩俊. 基于CFD和CSD耦合的涡激振和颤振气弹模拟[J]. 振动与冲击, 2015, 34(12): 85-89. Li, Y.L., Zhu. J.Q., Tang, H.J. Aeroelastic simulation of vortex-induced vibration and flutter based on CFD/CSD coupling solution [J]. Journal of Vibraion and Shock, 2015, 34(12): 85-89. [7] 刘钥, 张志田, 陈政清. 箱梁断面气动导数的CFD模拟研究[J]. 振动与冲击. 2011, 30(8): 243-248. Liu, Y., Zhang, Z.T., Chen, Z.Q. Numerical simulation of aerodynamic derivatives of box girder with CFD method [J]. Journal of Vibraion and Shock, 2011, 30(8): 243-248. [8] 刘小兵, 陈政清, 刘志文. 桥梁断面颤振稳定性的直接计算法[J]. 振动与冲击, 2013, 32(1): 78-82. Liu, X.B., Chen, Z.Q., Liu, Z.W. Direct computation method for flutter stability of a bridge deck [J]. Journal of Vibraion and Shock, 2013, 32(1): 78-82. [9] Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA J., 1994, 32(8): 1598-1605. [10] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2008. Wang, F.J. Computational Fluid Dynamics Analysis-Theory and Application of CFD Software [M]. Beijing: Tsinghua University Press, 2008. [11] Ying, X.Y., Xu. F.Y., Zhang, M.J., et al. Numerical explorations of the limit cycle flutter characteristics of a bridge deck [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169: 30-38. [12] Xu. F.Y., Ying, X.Y., Zhang, Z. Three-degree-of-freedom coupled numerical technique for extracting 18 aerodynamic derivatives of bridge decks [J]. Journal of Structural Engineering, 2014 , 140(11). [13] Theodorsen, T. General theory of aerodynamic in instability and the mechanism of flutter [R]. NACA Technical Report 496, U.S. National Advisory Committee for Aeronautics, Langley, Virginia, 1935.

PDF(1428 KB)

Accesses

Citation

Detail

段落导航
相关文章

/