基于模型叠加理论,针对橡胶元件的动态特性开展研究。采用时间—步长法,在MATLAB中建立了一维多参数橡胶叠加本构模型。模型由弹性单元、黏弹单元和弹塑单元并联构成。黏弹单元采用Able黏壶,用于表征橡胶元件的频率依赖性;弹塑单元采用多线性理想弹塑模型,用于表征橡胶元件的振幅依赖性。对比测试结果表明:在计算谐波激励下橡胶弹簧的受力时,力—位移迟滞曲线的计算结果与测试数据能很好地吻合,刚度频率振幅依赖性和阻尼频率依赖性能被较好的表征。在计算随机激励下橡胶隔振器的受力时,高频激励下的计算结果与测试数据能较好地吻合,低频激励下有一定程度的偏差,但计算精度在工程可接受范围之内。提出的叠加模型能较好的表征橡胶元件的动态特性,能够提高动力学模型的准确性。
Abstract
Based on the theory of an overlay model, the dynamic characteristics of rubber components were studied.A one-dimensional multi-parameter rubber constitutive model was established by using the time-step method in MATLAB.The model consists of elastic element, viscoelastic element, and elastoplastic element in parallel.The viscoelastic element uses Abel dashpot to characterize the frequency dependence of rubber components.The elastoplastic element uses a multilinear perfectly elastoplastic model to characterize the amplitude dependence of rubber components.The comparison with the test results show that: when the force of rubber spring based on overlay model was calculated with the harmonic excitation, the calculation results of the force-displacement hysteresis curves agree with the test results well, and the stiffness frequency amplitude dependence and damping frequency dependence were well characterized.When the force of the rubber isolator based on the overlay model was calculated with the random excitation, the calculation results of the model can match the test data with the high frequency excitation and has a certain degree of deviation with the low frequency excitation, but the calculation accuracy is within the acceptable range of engineering.The overlay model proposed can better characterize the dynamic characteristics of rubber components and improve the accuracy of the dynamic model.
关键词
动态特性 /
叠加模型 /
Able黏壶 /
多线性理想弹塑模型
{{custom_keyword}} /
Key words
dynamic characteristics /
overlay model /
Abel dashpot /
multilinear perfectly elastoplastic model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Nashif A D, Nashif A D, Jones D I G, et al. Vibration damping[M]. John Wiley & Sons, 1985.
[2] Payne A R, Whittaker R E. Low strain dynamic properties of filled rubbers[J]. Rubber chemistry and technology, 1971, 44(2): 440-478.
[3] 张义同. 热粘弹性理论[M]. 天津大学出版社, 2002.
Zhang Yitong. Thermo viscoelastic theory[M]. Tianjin university press, 2002.
[4] 何灼馀. 高速动车组转向架一系橡胶节点频率-刚度特性及其影响研究[D].西南交通大学,2012.
He Zhuoyu. Analysis of Frequency-stiffness Properties of Primary Suspension Rubber Joint in Bogie of High-speed EMU and its Influences [D].Southwest Jiaotong University,2012.
[5] Berg M. A non-linear rubber spring model for rail vehicle dynamics analysis[J]. Vehicle system dynamics, 1998, 30(3-4): 197-212.
[6] Sjöberg M M, Kari L. Non-linear behavior of a rubber isolator system using fractional derivatives[J]. Vehicle System Dynamics, 2002, 37(3): 217-236.
[7] Gemant A. A Method of Analyzing Experimental Results Obtained from Elasto‐Viscous Bodies[J]. Physics, 1936, 7(8): 311-317.
[8] 何志磊, 朱珍德, 朱明礼, 等. 基于分数阶导数的非定常蠕变本构模型研究[J]. 岩土力学, 2016, 37(3): 737-744.
HE Zhilei, ZHU Zhende, ZHU Mingli, et al. An unsteady creep constitutive model based on fractional order derivatives[J]. Rock and Soil Mechanics, 2016, 37(3): 737-744.
[9] 李军强,刘宏昭,王忠民.线性黏弹性本构方程及其动力学应用研究综述[J].振动与冲击,2005,24(2):116-121.
LI Junqiang,LIU Hongzhao,WANG Zhongmin.The reviewabout linear viscoelastic constitutive equation and dynamicapplication research[J].Journal of Vibration and Shock,2005,24( 2):116-121.
[10] 赵永玲, 侯之超. 基于分数导数的橡胶材料两种粘弹性本构模型[J]. 清华大学学报(自然科学版), 2013(3):378-383.
ZHAO Yong-ling,HOU Zhi-chao.Two viscoelastic constitutive models of rubber materials using fractional derivation[J].Jounal of Tsinghua University: Science and Technology,2013,53(3):378-383.
[11] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology, 1983, 27(3): 201-210.
[12] Schiessel H, Metzler R, Blumen A, et al. Generalized viscoelastic models: their fractional equations with solutions[J]. Journal of physics A: Mathematical and General, 1995, 28(23): 6567-6584.
[13] 王玉娇. 分数阶导数及其应用[D]. 太原理工大学, 2014.
Wang Yujiao. Fractional Derivatives and Its Applications [D]. Taiyuan University Of Technology, 2014.
[14] Gracia L A, Liarte E, Pelegay J L, et al. Finite element simulation of the hysteretic behaviour of an industrial rubber. Application to design of rubber components[J]. Finite Elements in Analysis and Design, 2010, 46(4): 357-368.
[15] 刘传军. 粘弹性材料复合梁的动力学建模与分析[D]. 东北大学, 2011.
Liu Chuanjun. Dynamic Modeling and Analysis of Viscoe-lastic Composite Beams [D]. Northeastern University, 2011.
[16] 蔡峨. 粘弹性力学基础[M]. 北京航空航天大学出版社, 1989.
Cai e. Foundation of viscoelastic mechanics [M]. Beihang University Press, 1989.
[17] 张大伟, 翟婉明, 朱胜阳, 等. 基于橡胶弹簧非线性模型的重载车辆轮轨动力特征分析[J]. 铁道学报, 2016, 38(12): 19-27.
ZHANU Dawei,ZHAI Wanming,ZHU Shengyang , et al. Wheel-rail Dynamic Interaction between Heavy-haul Freight Car and Ballasted Track Based on A Nonlinear Rubber Spring Model [J]. Journal of the China Railway Society, 2016, 38(12): 19-27.
[18] 潘孝勇,上官文斌,柴国钟,等..基于超弹性、分数导数和摩擦模型的碳黑填充橡胶隔振器动态建模[J].振动与冲击,2007,26(10):6-10.
Pan Xiaoyong, Shangguan Wenbin, CHAi guozhong, et al. Dynamic modeling for carbon filled rubber isolators based on hyperclasticity, fractional derivative and a generalized frictional model[J]. Journal of Vibration and Shock,2007,26(10):6-10.
[19] 寇磊, 白云. 分数阶微分双参数黏弹性地基矩形板动力响应[J]. 振动与冲击, 2014, 33(8): 141-147.
Kou Lei,Bai Yun. Dynamic response of rectangular plates on two-parameterviscoelastic foundation with fractional derivatives [J]. Journal of Vibration and Shock, 2014, 33(8): 141-147.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}