在现有高空作业平台直臂的变幅振动特性研究中,将臂架简化为一变截面悬臂梁,亦即视变幅油缸、臂架和转台相连的三角部位为刚性区域;这样,势必带来其分析结果的误差。为此,考虑臂架的实际连接和支承情况,将伸缩臂架等效为根部铰支、中间弹性支承且带有集中参数的变截面梁;基于哈密顿原理建立了变幅过程中臂架振动的微分方程,求解得到臂架振动的固有频率和振型,在此基础上结合特解和振型之间的正交性得到希尔伯特空间内臂架振动的状态空间方程,在Matlab/Simulink环境下进行动态仿真,可以得到随着仰角变化,臂架头部的振动响应。结果表明,所得臂架头部的振幅超过常规研究中29%以上,该研究可为高空作业平台振动控制提供更为精确的理论参考。
Abstract
In the current research for vibration behaviors of boom luffing in a straight boom aerial work platform, the boom was simplified to a stepped cantilever beam, that is, the triangle region that the boom, the luffing cylinder and the turntable hinged together was regarded as a rigid body.This simplification inevitably causes resultant errors.Considering the actual connection and support of the boom, the telescopic boom was treated as a stepped beam with concentrated parameters, pinned at the end and flexibly supported in the middle.Based on the Hamiltonian principle, the differential equation of the boom’s vibration during luffing movement was established, and then the natural frequency and mode shape of the boom’s vibration were obtained.On this basis, by using the orthogonality between modes of vibration and the particular solution, the state space equations of vibration in the Hilbert space were built.The dynamic response of boom’s tip was simulated by using Matlab/Simulink with the change of boom elevation angle.The results show that the vibration amplitude of the boom’s tip obtained in this study was more than 29% compared with the current research.This study can provide a more accurate theoretical reference for the vibration control of aerial work platforms.
关键词
哈密顿原理 /
微分方程 /
状态空间方程 /
振动响应
{{custom_keyword}} /
Key words
Hamiltonian principle /
differential equation /
state-space equation /
vibration response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]高凌翀,滕儒民,王欣.直臂高空作业车臂架系统振动特性研究[J].振动与冲击,2016,35(10): 225-230.
GAO Lingchong, TENG Rumin, WANG Xin.Vibration behaviors of the boom system of a telescopic boom aerial work platform[J].Journal of Vibration and Shock, 2016,35(10): 225-230.
[2]王吉照.伸缩臂高空作业车臂架变幅振动抑制研究[D].大连:大连理工大学,2016.
[3]向冰.臂架主动减振系统设计与控制策略研究[D].武汉:华中科技大学,2015.
[4]李圣,滕儒民,王欣,等.折臂式举高消防车臂架系统振动特性研究[J].大连理工大学学报,2016,56(5): 457-465.
LI Sheng, TENG Rumin, WANG Xin, et al.Research on vibration characteristics of folding boom system for aerial work fire-truck[J].Journal of Dalian University of Technology, 2016, 56(5): 457-465.
[5]ZIMMERT N, PERTSCH A, SAWODNY O.2DOF control of a fire-rescue turntable ladder[J].IEEE Transactions on Control Systems Technology, 2012, 20(2): 438-452.
[6]PERTSCH A, ZIMMERT N, SAWODNY O.Modeling a fire-rescue turntable ladder as piecewise euler-bernoulli beam with a tip mass[C]//Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with 2009 28th Chinese Control Conference.Shanghai: IEEE, 2009.
[7]PERTSCH A, SAWODNY O.Modelling and control of coupled bending and torsional vibrations of an articulated aerial ladder[J].Mechatronics, 2016, 33: 34-48.
[8]蒙树立,熊静琪,吕志刚.折叠式高空作业车臂架系统的动力学建模[J].噪声与振动控制,2012,32(4): 63-67.
MENG Shuli, XIONG Jingqi, L Zhigang.Modeling of arm system of folding-boom aerial platform vehicle[J].Noise and Vibration Control, 2012, 32(4): 63-67.
[9]王子坡,胡军科,杨文彬,等.臂架变幅机构负载下降时的平稳性研究[J].合肥工业大学学报(自然科学版),2013,36(7): 783-787.
WANG Zipo, HU Junke, YANG Wenbin, et al.Research on the stability of boom luffing mechanism at decline stage[J].Journal of Hefei University of Technology(Nature Science), 2013, 36(7): 783-787.
[10]吉利科,张伟,叶敏,等.液压弹簧及其在液压控制中的应用研究[J].液压气动与密封,2018,38(8): 44-47.
JI Like, ZHANG Wei, YE Min, et al.Research on the hydraulic spring and its application for the hydraulic control system[J].Hydraulics Pneumatics & Seals, 2018, 38(8): 44-47.
[11]刘勋,刘玉,李新有,等.液压伺服控制系统的液压弹簧刚度和机械负载刚度耦合特性分析[J].钢铁技术,2012(2): 47-54.
LIU Xun, LIU Yu, LI Xinyou, et al.Analysis of coupling characteristics between hydraulic spring stiffness and mechanical load stiffness of hydraulic servo control system[J].Iron & Steel Technology, 2012(2): 47-54.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}