吸能型防冲立柱液体冲击问题研究

张建卓,张佳林

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 51-57.

PDF(1250 KB)
PDF(1250 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 51-57.
论文

吸能型防冲立柱液体冲击问题研究

  • 张建卓,张佳林
作者信息 +

A study on liquid shock of energy-absorbing anti-impact hydraulic column

  • ZHANG Jianzhuo,ZHANG Jialin
Author information +
文章历史 +

摘要

针对冲击作用下加入吸能构件后液压立柱的液体冲击问题,对扩径式构件在不同加载下的变形行为和特性进行分析,建立基于LuGre模型的吸能构件能量吸收模型。基于液体冲击定解问题的一般方程进行吸能构件及立柱系统顶板来压液体冲击理论和仿真分析,得到吸能构件对立柱内液体冲击的影响规律。结果表明:最大静摩擦力和库伦摩擦力对应吸能构件峰值承载力以及稳定变形阶段反作用力,鬃毛刚度和微观阻尼系数影响吸能构件弹性变形过度到塑性变形时的力-位移特性;随着扩径式构件的变形过程,吸能构件对立柱液体冲击的影响作用分为近似弹性、柔性让位吸能和刚性三个阶段。

Abstract

According to the problem of liquid shock on hydraulic column with energy-absorbing component under impact load, the deformation behavior and characteristics of a diameter-expanding energy-absorbing component under different loads were analyzed, and the energy absorption model of energy-absorbing component based on the LuGre model was established.Then, based on the general equation of determining solution of liquid shock problem, theoretical and simulation analysis of liquid shock of roof weighting for the energy-absorbing component and hydraulic column system were carried out, and the effect of characteristics of energy-absorbing components on liquid shock of hydraulic column was obtained.The results show that the maximum static friction force and coulomb friction force correspond to the peak bearing capacity and the reaction force in stable deformation stage of the energy-absorbing component respectively.The bristle stiffness and micro-damping coefficient influence the force-displacement characteristic of energy-absorbing component when the elastic deformation transits to the plastic deformation.With deformation process of diameter-expanding energy-absorbing component, the influence of energy-absorbing component on liquid shock of hydraulic column can be divided into approximate elasticity, flexible giving way to absorpt energy and rigidity three stages.

关键词

吸能构件 / LuGre模型 / 吸能型防冲液压立柱 / 液体冲击

Key words

energy-absorbing component / LuGre friction model / energy-absorbing anti-impact hydraulic column / liquid shock

引用本文

导出引用
张建卓,张佳林. 吸能型防冲立柱液体冲击问题研究[J]. 振动与冲击, 2020, 39(8): 51-57
ZHANG Jianzhuo,ZHANG Jialin. A study on liquid shock of energy-absorbing anti-impact hydraulic column[J]. Journal of Vibration and Shock, 2020, 39(8): 51-57

参考文献

[1]王国法,赵志礼.液压支架双伸缩抗冲击立柱动态分析[J].煤矿开采,2010,15(2): 62-65. WANG Guofa, ZHAO Zhili.Dynamic analysis of double-telescopic prop against shocking in powered support[J].Coal Mining Technology, 2010,15(2): 62-65. [2]王阳阳.内置蓄能器立柱的抗冲击特性分析[J].煤矿机械,2015,36(12): 115-116. WANG Yangyang.Impacting resistance ability study of prop with inside accumulator[J].Coal Mine Machinery, 2015,36(12): 115-116. [3]高明仕,窦林名,张农,等.冲击矿压巷道围岩控制的强弱强力学模型及其应用分析[J].岩土力学,2008,29(2): 359-364. GAO Mingshi, DOU Linming, ZHANG Nong, et al.Strong-soft-strong mechanical model for controlling roadway surrounding rock subjected to rock burst and its application[J].Rock and Soil Mechanics, 2008,29(2): 359-364. [4]贺虎,窦林名,巩思园,等.巷道防冲机理及支护控制研究[J].采矿与安全工程学报,2010,27(1): 40-44. HE Hu, DOU Linming, GONG Siyuan, et al.Mechanism of rockburst prevention and supporting control technology in roadways[J].Journal of Mining and Safety Engineering, 2010,27(1): 40-44. [5]潘一山,王凯兴,肖永惠.基于摆型波理论的防冲支护设计[J].岩石力学与工程学报,2013,32(8): 1537-1543. PAN Yishan, WANG Kaixing, XIAO Yonghui.Design of anti-scour support based on theory of pendulum-type wave[J].Chinese Journal of Rock Mechanics and Engineering, 2013,32(8): 1537-1543. [6]马箫,潘一山,张建卓,等.防冲支架的核心吸能构件设计与吸能性能研究[J].煤炭学报,2018,43(4): 1171-1178. MA Xiao, PAN Yishan, ZHANG Jianzhuo, et al.Design and performance research on core energy absorption component of anti-impact support[J].Journal of China Coal Society, 2018,43(4): 1171-1178. [7]唐治, 唐巨鹏, 张世明, 等.吸能防冲立柱设计及其特性数值分析[J].中国矿业大学学报, 2016, 45(6): 1118-1123. TANG Zhi, TANG Jupeng, ZHANG Shiming, et al.Design and characteristics numerical analysis of energy absorption and anti-impact column[J].Journal of China University of Mining and Technology, 2016, 45(6): 1118-1123. [8]刘欣科,赵忠辉,赵锐.冲击载荷作用下液压支架立柱动态特性研究[J].煤炭科学技术,2012,40(12): 66-70. LIU Xinke, ZHAO Zhonghui, ZHAO Rui.Study on dynamic features of leg applied to hydraulic powered support under bumping load[J].Coal Science and Technology, 2012,40(12): 66-70. [9]杨在林, 王耀, 黑宝平, 等.基于等效转化关系的一维非均匀介质波动问题解析方法研究[J].振动与冲击,2016,35(6): 152-155. YANG Zailin, WANG Yao, HEI Baoping, et al.Analytical solutions to wave motion in a one-dimensional inhomogeneous medium based on an equivalent transformation relationship[J].Journal of Vibration and Shock, 2016,35(6): 152-155. [10]唐治.自移式吸能防冲巷道支架研究[D].阜新: 辽宁工程技术大学,2014. [11]原大宁,刘丽兰,刘宏昭,等.滑动摩擦模型研究现状[J].系统仿真学报,2009,21(4): 1142-1147. YUAN Daning, LIU Lilan, LIU Hongzhao, et al.Progress of pre-sliding friction model[J].Journal of System Simulation, 2009,21(4): 1142-1147. [12]CANUDAS DE W C, OLSSON H, ASTROM K J.A new model for control of systems with friction [J].IEEE Transactions on Automatic Control, 1995, 40(3): 419-425. [13]MUVENGEI O, KIHIU J, IKUA B.Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints[J].Multibody System Dynamics, 2012, 28(4): 369-393. [14]张艳龙,王丽,唐斌斌.含改进LuGre动摩擦的非光滑振动系统的动力学分析[J].振动与冲击,2018,37(6): 212-217. ZHANG Yanlong, WANG Li, TANG Binbin.Dynamical analysis of a non-smooth vibration system with modified LuGre dynamic friction[J].Journal of Vibration and Shock, 2018, 37(6): 212-217. [15]PIATKOWSKI T.Dahl and LuGre dynamic friction models: the analysis of selected properties[J].Mechanism and Machine Theory, 2014,73: 93-100. [16]唐治, 潘一山, 朱小景, 等.六边薄壁构件径向压缩下的吸能防冲特性分析[J].煤炭科学技术, 2016,44(11): 56-61. TANG Zhi, PAN Yishan, ZHU Xiaojing, et al.Analysis on energy absorption and impact prevention features of hexagonal thin-wall component under radial compression[J].Coal Science and Technology, 2016,44(11): 56-61. [17]廖湘平,龚国芳,孙辰晨,等.基于AMESim的液粘调速离合器动态接合特性研究[J].农业机械学报, 2016,47(6): 324-332. LIAO Xiangping, GONG Guofang, SUN Chenchen, et al.Dynamic engagement performance of hydro-viscous clutch based on AMESim[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 324-332.

PDF(1250 KB)

Accesses

Citation

Detail

段落导航
相关文章

/