基于实测扫频响应反推管路卡箍支承刚度及阻尼

高晔1,2,孙伟1,2,马辉1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 58-63.

PDF(1093 KB)
PDF(1093 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (8) : 58-63.
论文

基于实测扫频响应反推管路卡箍支承刚度及阻尼

  • 高晔1,2,孙伟1,2,马辉1,2
作者信息 +

Inverse identification of the pipeline support stiffness and damping of the hoop based on the measured sweep frequency response

  • GAO Ye1,2,SUN Wei1,2,MA Hui1,2
Author information +
文章历史 +

摘要

为了建立管路系统动力学模型并分析其振动特性,需获取动载荷下卡箍支承刚度及阻尼等力学特性参数。该研究提出一种基于实测扫频响应的响应面法来反推上述参数的方法;提出了基于响应面反推管路卡箍支承刚度和阻尼的辨识算法;利用自编有限元创建了管体-卡箍系统的动力学模型,推导了管路系统振动响应;在利用响应面法的匹配计算中,进行了卡箍刚度及阻尼关于频率和对应响应的多项式拟合,并采用基本遗传算法进行了优化。在实例研究中,用提出的方法辨识出了所研究管路卡箍的具有频率依赖性的支承刚度和阻尼;将辨识值回代到分析模型中,通过比较预测的与实测的频域响应,共振频率及响应偏差均小于3%,证明了辨识结果的合理性。

Abstract

To establish the dynamic model of a pipeline system and analyze the vibration characteristics, it is necessary to obtain mechanical characteristic parameters of the hoop such as the support stiffness and damping under dynamic load.In this paper, a response surface method for identifying the parameters above was proposed, which was based on the measured sweep response.Firstly, an identification algorithm based on response surface was proposed to identify the stiffness and damping of the pipeline hoop.The dynamic model of the pipe-hoop system was created by the developed finite element method, and the vibration response of pipeline system was deduced.Then on the basis of response surface method, the polynomial fitting of stiffness and damping about frequency and corresponding response was carried out by the matching calculation, and the simple genetic algorithm was used for optimization.Finally, a case study was carried, and the support stiffness and damping with frequency-dependent characteristic were identified by the proposed method.By including identified values into the analysis model, the relative errors between predicted and measured resonance frequency and response are both less than 3% and then the reliability of the identified results was proved.

关键词

管路卡箍 / 支承刚度 / 支承阻尼 / 频域响应 / 反推辨识

Key words

pipeline hoop / support stiffness / support damping / frequency response / inverse identification

引用本文

导出引用
高晔1,2,孙伟1,2,马辉1,2. 基于实测扫频响应反推管路卡箍支承刚度及阻尼[J]. 振动与冲击, 2020, 39(8): 58-63
GAO Ye1,2,SUN Wei1,2,MA Hui1,2. Inverse identification of the pipeline support stiffness and damping of the hoop based on the measured sweep frequency response[J]. Journal of Vibration and Shock, 2020, 39(8): 58-63

参考文献

[1]SCHRTTER M, TREBUNˇA F, HAGARA M, et al.Methodology for experimental analysis of pipeline system vibration[J].Procedia Engineering, 2012, 48: 613-620. [2]黄益民, 葛森, 吴炜, 等.不同支承刚度对输流管道系统动力学特性完整性影响[J].振动与冲击, 2013, 32(7): 165-168. HUANG Yimin, GE Sen, WU Wei, et al.Effect of different supporting rigidities on dynamic characteristics integrity of a pipeline conveying fluid[J].Journal of Vibration and Shock, 2013, 32(7): 165-168. [3]陈艳秋, 朱梓根.基于遗传算法的航空发动机管路优化设计[J].航空动力学报,2002, 17(4): 421-425. CHEN Yanqiu, ZHU Zigen.Piping system design of aero-engine using genetic algorithms[J].Journal of Aerospace Power, 2002, 17(4): 421-425. [4]李鑫, 王少萍.基于卡箍优化布局的飞机液压管路减振分析[J].振动与冲击, 2013, 32(1): 14-20. LI Xin, WANG Shaoping.Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamp layout[J].Journal of Vibration and Shock, 2013, 32(1): 14-20. [5]SCHRTTER M, TREBUNˇA F, HAGARA M, et al.Methodology for experimental analysis of pipeline system vibration[J].Procedia Engineering, 2012, 48: 613-620. [6]李占营, 王建军, 邱明星, 等.简谐激励下柔性卡箍支承管路系统响应[J].航空动力学报, 2017, 32(11): 2705-2711. LI Zhanying, WANG Jianjun, QIU Mingxing, et al.Responses of pipe system with flexible hoop under harmonic excitation[J].Journal of Aerospace Power, 2017, 32(11): 2705-2712. [7]ULANOV A M, BEZBORODOV S A.Calculation method of pipeline vibration with damping supports made of the MR material[J].Procedia Engineering, 2016, 150: 101-106. [8]BEZBORODOV S A, ULANOV A M.Calculation of vibration of pipeline bundle with damping support made of MR material[J].Procedia Engineering, 2017, 176: 169-174. [9]ULANOV A M, BEZBORODOV S A.Research of stress-strained state of pipelines bundle with damping support made of MR material[J].Procedia Engineering, 2017, 206: 3-8. [10]CORTS F, ELEJABARRIETA M J.Structural vibration of flexural beams with thick unconstrained layer damping[J].International Journal of Solids and Structures, 2008, 45(22/23): 5805-5813. [11]BARKANOV E, SKUKIS E, PETITJEAN B.Characterisation of viscoelastic layers in sandwich panels via an inverse technique[J].Journal of Sound and Vibration, 2009, 327(3/4/5): 402-412. [12]MYERS R H.Response surface methodology: current status and future directions[J].Journal of Quality Technology, 1999, 31(1): 30-44. [13]鲍诺, 王春洁, 赵军鹏,等.基于响应面法的结构动力学模型修正[J].振动与冲击, 2013, 32(16): 54-58. BAO Nuo, WANG Chunjie, ZHAO Junpeng, et al.Model updating of structure dynamics based on response surface methodology[J].Journal of Vibration and Shock, 2013, 32(16): 54-58. [14]麻越垠, 陈万华, 王元兴, 等.基于响应面方法的叶栅摆动装置有限元模型修正[J].振动与冲击, 2016, 35(22): 232-236. MA Yueyin, CHEN Wanhua, WANG Yuanxing, et al.Finite element model updating of a blade swing mechanism based on response surface method[J].Journal of Vibration and Shock, 2016, 35(22): 232-236. [15]LIU G, LI Y.Vibration analysis of liquid-filled pipelines with elastic constraints[J].Journal of Sound and Vibration, 2011, 330(13): 3166-3181. [16]XU Y, JOHNSTON D N, JIAO Z, et al.Frequency modelling and solution of fluid-structure interaction in complex pipelines[J].Journal of Sound and Vibration, 2014, 333(10): 2800-2822. [17]刘蓉, 孙伟.局部涂敷硬涂层薄板有限元建模及涂敷位置优化[J].振动与冲击,2018,37(22): 144-150. LIU Rong, SUN Wei.Finite element modeling and damping optimization of a thin plate partially covered with hard coating[J].Journal of Vibration and Shock, 2018, 37(22): 144-150. [18]邹万杰, 瞿伟廉.基于频响函数和遗传算法的结构损伤识别研究[J].振动与冲击, 2008, 27(12): 28-30. ZOU Wanjie, QU Weilian.Structural damage identification based on frequency response function and genetic algorithm[J].Journal of Vibration and Shock, 2008, 27(12): 28-30.

PDF(1093 KB)

Accesses

Citation

Detail

段落导航
相关文章

/