舰载飞机拦阻着舰过程中,在多系统相互耦合条件下复杂的拦阻动载荷通过拦阻钩作用于机体结构,对机体结构安全性提出挑战。研究此过程中拦阻动载荷在结构上的传播规律及主传力结构的动响应特性具有极为重要的意义。通过地面拦阻冲击模拟试验,对舰载飞机拦阻减速过程中机体主传力结构动响应进行分析研究,并基于刚柔耦合动力学模型对试验过程进行数值模拟仿真分析。研究得到了拦阻过载和应力应变在结构上的响应特征,获取了过载和应变峰值沿机体传力路径的分布规律,可以作为舰载飞机结构强度设计的重要参考依据。研究表明拦阻冲击过载峰值沿主传力路径顺航向,呈现出明显的衰减趋势。靠近拦阻钩接头结构过载峰值较高,但由于冲击时间短,应变响应较小,不会对机体结构造成损伤和破坏。拦阻载荷在机翼隔离框位置会产生应力集中效应,结构设计时应注意对相应结构作局部加强。
Abstract
The fuselage structures were subjected to complex dynamic loads through the arresting hook, in the process of arresting of a Carrier-based Aircraft.In order to avoid impact damage to the structure, it was necessary to obtain the dynamic response characteristics of the main force transmission structures and find out the propagation and response law of the dynamic load on the structures.In this paper, the dynamic response in the main force transmission structures during the process of arresting the Carrier-based Aircraft was studied through the simulation of ground arresting impact tests.Meanwhile, a rigid-flexible coupling dynamic model was established to simulate the real test state.The structural response characteristics of impact acceleration and stress-strain were obtained, as well as the distribution of acceleration and stress-strain peak along the main force transmission structures, which can be used as a reference for structural strength design of the Carrier-based Aircraft.The results show that the peak of impact acceleration decreases along the main force transmission path, showing an obvious attenuation trend.It will not cause damage to the structures due to short impact time and small strain response, although the impact acceleration peak near the blocking joint is high.The stress concentration effect will be caused by the arresting load at the position of the wing isolation frame, and the corresponding structure should be strengthened locally in the structural design.
关键词
舰载飞机 /
拦阻着舰 /
冲击试验 /
动响应分析 /
刚柔耦合模型
{{custom_keyword}} /
Key words
carrier-based aircraft /
arrest landing /
impact test /
dynamic response analysis /
rigid-flexible coupling model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 弋沛琦, 高瑞乾. 飞机着陆系统的现状与发展. 海军航空工程学院学报,2005, 20(4): 461-464.
YE Peiqi, Gao Ruiqian. Status and development of aircraft landing syste[J]. Journal of Naval Aeronautical Engineering Institute, 2005, 20(4): 461-464.
[2] 沈文厚,赵治华,任革学,王宁羽. 拦阻索冲击的多体动力学仿真研究[J]. 振动与冲击,2015, 34 (5): 73-77.
SHEN Wenhou, Zhao Zhihua, Ren Genxue,Wang Ningyu. Multi-body Dynamic Simulation of the Impact on Cross Deck Pendant[J]. Journal of Vibration and Shock, 2015, 34(5): 73-77.
[3] 马善智,陈国平,何欢. 偏心拦阻过程最优拦阻索运动速度的设计[J]. 振动与冲击,2012, 31(19): 183-187.
MA ShanZhi, Chen GuoPing, He Huan. Design the Optimal Arresting Cable Velocity for Off_Center Arresting Process[J]. Journal of Vibration and Shock, 2012, 31(19): 183-187.
[4] John WL. Aircraft landing dynamic analysis volume 1 equations of motion: AD-A240123[R]. United States: Deputy for Engineering, Aero-nautical Systems Division, Air Force Systems Command, 1987: 135-162
[5] 赵波. 舰载飞机起降过程的几个飞行动力学问题[J]. 飞行力学, 1991(4):83-89.
ZHAO Bo. Several Flight Dynamics Problems in the Takeoff and Landing Process of Shipborne Aircraft[J], Flight Dynamics | Fligh Dynam, 1991(4):83-89.
[6] 金长江, 洪冠新. 舰载机弹射起飞及拦阻着舰动力学问题[J]. 航空学报, 1990, 11(12):534-542.
JIN Changjiang, Hong Guanxin. Dynamics of Ejection Takeoff and Interception of Shipborne Aircraft[J]. Acta Aeronautica ET Astronautica Sinica, 1990, 11(12):534-542.
[7] 张明晖, 袁理, 洪冠新. 航空母舰液压拦阻系统拦阻力建模与仿真[J]. 北京航空航天大学学报, 2010, 36(1): 100-103.
Zhang Minghui, Yuan Li, Hong Guanxin. Aircraft carrier hydraulic arresting gear arrestingforce modeling andsimulation[J]. J Beijing Univ Aeron Astron, 2010, 36(1): 100-103.
[8] 聂宏, 彭一明, 魏小辉, 张明. 舰载飞机着舰拦阻动力学研究综述[J]. 航空学报, 2014, 35(1):1-12.
NIE Hong, Peng Yiming, Wei Xaiohui, Zhang Ming. Review on Landing and Interception Dynamics of Shipborne Aircraft[J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(1):1-12.
[9] Billec W B. Dynamic performance of a Mark 7 Mod 1 arresting system using 24-inch and 28-inch PD fairlead sheaves, W-900172[R]. New Jersey: U.S. Naval Air Test Facility, U.S. Naval Air Station Lakehurst, 1966.
[10] Fisher B D, Sleeper R K, Stubbs S M. Summary of NASA landing-gear Research, 19780018105[R]. Langley Research Center, 1978.
[11] Naval Air Engineering Center. Military standard catapulting and arresting gear forcing functions for aircraft design: MIL-STD-2066(AS) [S]. United States: Department of the Navy Air Systems Command, 1981:108-170.
[12] Pervan B. Performance Analysis of Carrier-Phase DGPS Navigation for Shipboard Landing of Aircraft[J], Journal of the Institute of Navigation, 2003(50): 181-191.
[13] 胡孟权,林国华.舰载飞机着舰拦阻动力学分析[J]. 空军工程大学学报:自然科学版, 2000, 1(5): 8-11.
HU Mengquan, Lin Guohua. Dynamics Analysis of Shipborne Aircraft Landing and Interception[J]. Journal of Air Force Engineering University: Natural Science Edition, 2000, 1(5): 8-11.
[14] 刘瑜, 童明波. 某型飞机着舰拦阻动力学仿真与分析[J]. 航空计算技术,2011, 41(4):49-55.
LIU Yu, Tong Mingbo. Dynamics simulation and analysis of landing arrest of an aircraft[J]. Aeronautical Computing Technique, 2011, 41(4):49-55.
[15] 贾忠湖,郑小洪. 拦阻着舰过程中的飞机起落架动力学分析[J]. 海军航空工程学院学报, 2012,27(1): 50-54.
JIA Zhonghu, Zheng Xiaohong. Dynamics Analysis of Aircraft Landing Gear in the Process of Arresting Ship[J]. Journal of Naval Aeronautical and Astronautical University, 2012,27(1): 50-54.
[16] 杨全伟. 舰载飞机拦阻钩载荷实测方法研究[J]. 航空学报,2015, 36(4):1162-1168.
YANG Quanwei. Research on Load Measurement Method of Shipborne Aircraft Arresting Hook[J]. Acta Aeronautica ET Astronautica Sinica, 2015, 36(4):1162-1168.
[17] 刘成玉,王斌团. 舰载机-拦阻器耦合系统动力学建模与仿真分析[J]. 南京航空航天大学学报, 2016, 48(3): 418-425.
LIU Chengyu, Wang Bintuan. Dynamics Modeling and Simulation Analysis of Shipborne Aircraft-Blocker Coupled System[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(3): 418-425.
[18] 何敏, 朱小龙,刘晓明,刘凡,姚小虎. 舰载飞机前机身结构地面弹射冲击响应研究[J]. 航空学报,2018, 39(5): 120-130.
HE Ming, Zhu Xiaolong, Liu Xiaoming,Liu Fan, Yao Xiaohu. Study on Ground Ejection Impact Response of Front Fuselage Structure of Shipborne Aircraft[J]. Acta Aeronautica ET Astronautica Sinica, 2018, 39(5): 120-130.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}