爆炸冲击波超压加载伪随机网壳的分布规律研究

夏明1,2,周丰峻1,卢芳云2,张鏖1,郑磊1,孙云厚1,王晓东1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 1-8.

PDF(3170 KB)
PDF(3170 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 1-8.
论文

爆炸冲击波超压加载伪随机网壳的分布规律研究

  • 夏明1,2,周丰峻1,卢芳云2,张鏖1,郑磊1,孙云厚1,王晓东1
作者信息 +

Overpressure distribution on a pseudorandom reticulated shell loaded by explosion shock wave

  • XIA Ming1,2, ZHOU Fengjun1, LU Fangyun2, ZHANG Ao1, ZHENG Lei1,SUN Yunhou1, WANG Xiaodong1
Author information +
文章历史 +

摘要

采用缩比模型爆炸试验与数值仿真相结合的方法,开展了爆炸冲击波超压加载伪随机网壳的分布规律研究。首先,选取具有代表性的某伪随机140面体网壳结构,开展了缩比模型爆炸试验,获得了表面特征测点的冲击波超压数据;之后,对比分析了试验与仿真结果的误差及原因,以试验数据为基础,建立了爆炸冲击波与某伪随机140面体网壳结构相互作用的数值仿真模型,并对空中爆炸和地面爆炸的3种不同距离共6种工况下,网壳结构的特征表面超压作用过程进行了计算和分析,拓展了试验结果;最后,对伪随机网壳表面冲击波超压分布规律进行了研究,并提出了增强网壳结构安全性的防护措施,为伪随机网壳结构抗冲击安全设计提供了参考。结果表明:与传统对称网壳结构相比,伪随机网壳在超压峰值分布规律和作用机制等方面都更为复杂,受到结构伪随机特性的影响,在相似位置表面,超压峰值也有明显差异;网壳迎爆面底部和中部超压峰值与其他部位相比,一般较高;在网壳外一定距离构筑防爆墙和加固网壳中部及底部节点的方法,可提升伪随机网壳结构的抗冲击安全性。

Abstract

By scale model explosion experiments and numerical simulations, the distribution of the overpressure on a pseudorandom reticulated shell loaded by explosion shock wave was investigated.A typical pseudorandom 140-sided reticulated shell was selected as an investigated object to carry out model explosion experiments.The shock wave overpressure data at the surface characteristic measuring points were measured.The errors of the experimental and simulation results were compared and its reasons were analyzed.Based on the experimental data, a numerical simulation model for the interaction between the explosion shock wave and the shell was established, which was then used to deal with six different conditions of air explosion and ground explosion at three different distances.The action process of the characteristic surface overpressure on the shell was analyzed, and the experimental results were extended.The distribution of shock wave overpressure on the shell was achieved, and the protecting measures to enhance the safety of the reticulated shell were put forward, which provides a reference to the shock safety design of pseudorandom reticulated shells.The results show that the overpressure peak value distribution on the pseudorandom reticulated shell is more complicated than the traditional symmetric one and the action mechanism is influenced by the pseudorandom characteristic of the structure, while the overpressure peak value is also of obvious difference at the similar position on the surface.The peak values of overpressure at the bottom and middle of the shell are generally higher than at other parts in the blast direction.The method of erecting explosion-proof wall at a certain distance outside the reticulated shell and reinforcing the middle and bottom nodes structure can improve its anti-impact security.

关键词

爆炸冲击波 / 超压 / 缩比模型 / 伪随机网壳结构 / 数值仿真

Key words

blast shock wave / overpressure / scale model / pseudorandom reticulated shell / numerical simulation

引用本文

导出引用
夏明1,2,周丰峻1,卢芳云2,张鏖1,郑磊1,孙云厚1,王晓东1. 爆炸冲击波超压加载伪随机网壳的分布规律研究[J]. 振动与冲击, 2020, 39(9): 1-8
XIA Ming1,2, ZHOU Fengjun1, LU Fangyun2, ZHANG Ao1, ZHENG Lei1,SUN Yunhou1, WANG Xiaodong1. Overpressure distribution on a pseudorandom reticulated shell loaded by explosion shock wave[J]. Journal of Vibration and Shock, 2020, 39(9): 1-8

参考文献

[1] Fan F,Wang DZ, ZhiX D,et al.Failure modes of reticulated domes subjected to impact and the judgment[J]. Thin-Walled Structures.2010, 48(2)143~149. [2] 翟希梅,王永辉. 爆炸荷载下网壳结构的动力响应及泄爆措施[J]. 爆炸与冲击. 2012(04): 404-410. ZHAI Xi-mei, WANG Yong-hui.Dynamic response and explosion relief of reticulated shell under blast loading[J]. Explosion and Shock Waves. 2012(04): 404-410. [3] 苏倩倩,翟希梅. K8型单层球面网壳爆炸动力响应的简化计算方法研究[J]. 振动与冲击. 2018(05): 213-220. SU Qian-qian,ZHAI Xi-mei. Simplified calculation method for dynamic response of K8 single layer reticulated shell under blast load[J]. Vibration and Shock. 2018(05): 213-220. [4] Ma J L, Wu C Q, Zhi X D, et al. Prediction of Confined Blast Loading in Single-Layer Lattice Shells[J]. Advances in Structural Engineering. 2014, 17(7): 1029-1043. [5] Ma JL, Fan F, Zhang L, et al. Failure modes and failure mechanisms of single-layer reticulated domes subjected to interior blasts[J]. Thin-Walled Structures.2018, 132: 208-216. [6] Su Q, Zhai X. Dynamic response of single-layer reticulated shell with explosion-protection wall under blast loading[J]. Thin-Walled Structures.2018, 127: 389-401. [7] Fu S, Gao X, Chen X. The similarity law and its verification of cylindrical lattice shell model under internal explosion[J]. International Journal of Impact Engineering.2018, 122: 38-49. [8] Verwimp E, Tysmans T, Mollaert M, et al. Experimental and numerical buckling analysis of a thin TRC dome[J]. Thin-Walled Structures.2015, 94: 89-97. [9] Zhao Z, Chen Z, Yan X, et al. Simplified numerical method for latticed shells that considers member geometric imperfection and semi-rigid joints[J]. Advances in Structural Engineering. 2016, 19(4): 689-702. [10] Liu H, Ding Y, Chen Z. Static stability behavior of aluminum alloy single-layer spherical latticed shell structure with Temcorjoints[J]. Thin-Walled Structures.2017, 120: 355-365. [11]Wang H, Wu M. Study on the Shape Optimization of Cable-Stiffened Single-Layer Latticed Shells[J]. International Journal of Steel Structures. 2018, 18(3): 924-934. [12] Xie S, Wang Y, Wang X, et al. Parametric design and static behavior analysis of single-layer hemi-ellipsoida latticed shell: 2018 2nd International Workshop on Renewable Energy and Development (IWRED 2018)[C]. Guilin, China: 2018. [13] Hua Y, Akula P K,Gu L. Experimental and numerical investigation of carbon fiber sandwich panels subjected to blast loading[J]. Composites Part B: Engineering. 2014,56: 456-463. [14] Hua Y, Akula P K, Gu L, et al. Experimental and numerical investigation of the mechanism of blast wave transmission through asurrogatehead[J].Journal of Computational and Nonlinear Dynamics. 2014, 9(3): 1010-1011. [15] Lee S, Lee H, Lee J, et al. Shock Response Analysis of Blast Hardened Bulkhead in Partial Chamber Model under Internal Blast[J].Procedia Engineering.2017,173(Supplement C): 511- 518. [16] Xiao W, Andrae M, Ruediger L, et al. Numerical prediction of blast wall effectiveness for structural protection against air blast[J]. Procedia Engineering.2017,199(Supplement C): 2519 -2524. [17] Grisaro H Y, Dancygier A N. Spatial mass distribution of fragments striking a protective structure[J]. International Journal of Impact Engineering. 2018, 112(Supplement C): 1-14. [18] 亨利其.J. 爆炸动力学及其应用[M]. 熊建国,译.北京:科学出版社,1987.

PDF(3170 KB)

Accesses

Citation

Detail

段落导航
相关文章

/