针对存在轴向拉力的矩形截面微梁谐振式质量传感器中的质量传感灵敏度、热弹性阻尼以及最小检测质量等问题进行了深入的研究。推导了质量传感器在存在轴向拉力情况下的检测灵敏度、热弹性阻尼以及最小检测质量的表达式。揭示了轴向拉力对质量传感器的工作性能的影响机理。结果表明:轴向拉力会提高质量传感灵敏度;轴向拉力会降低谐振器的热弹性阻尼;轴向拉力可以使得质量传感器捕获更微小的检测质量。
Abstract
An analytical study was carried out on the evaluation of mass sensitivity, thermoelastic damping and minimum detectable mass for resonant mass sensors of bridge configuration with axial pretension.Explicit expressions for mass sensitivity, thermoelastic damping and minimum detectable mass were derived.Proposed models were applied to examine the effect of axial pretension on the performance of mass sensors.The results of the presented study demonstrate that better device performances can be achieved by axial pretension, i.e., the presence of tensile axial stress could improve mass sensitivity, increase quality factor, and enable the mass sensor to detect ever smaller mass.
关键词
微纳米质量传感器 /
轴向预应力 /
检测灵敏度 /
热弹性阻尼 /
最小检测质量
{{custom_keyword}} /
Key words
micromechanical mass sensor /
axial pretension /
mass sensitivity /
thermoelastic damping /
minimum detectable mass
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Eom K, Park H S, Yoon D S, et al. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Physics Reports, 2011, 503(4-5): 115-163.
[2] Imboden M, Mohanty P. Dissipation in nanoelectromechanical systems. Physics Reports, 2014, 534(3): 89-146.
[3] Ekinci K L, Yang Y T, Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. Journal of Applied Physics, 2004, 95(5): 2682-2689.
[4] Arash B, Jiang J W, Rabczuk T. A review on nanomechanical resonators and their applications in sensors and molecular transportation. Applied Physics Reviews, 2015, 2(2): 021301.
[5] Lassagne B, Garcia-Sanchez D, Aguasca A, et al. Ultrasensitive Mass Sensing with a Nanotube Electromechanical Resonator. Nano Letters, 2008, 8(11): 3735-3738.
[6] Stachiv I, Fedorchenko A I, Chen Y L. Mass detection by means of the vibrating nanomechanical resonators. Applied Physics Letters, 2012, 100(9): 093110.
[7] Olcum S, Cermak N, Wasserman S C, et al. Weighing nanoparticles in solution at the attogram scale. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1310-1315.
[8] Peng H B, Chang C W, Aloni S, et al. Ultrahigh frequency nanotube resonators. Physical Review Letters, 2006, 97(8): 087203.
[9] Wong S J, Fox C H J, McWilliam S. Thermoelastic damping of the in-plane vibration of thin silicon rings. Journal of Sound and Vibration, 2006, 293(1-2): 266-285.
[10] Verbridge S S, Shapiro D F, Craighead H G, et al. Macroscopic tuning of nanomechanics: Substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Letters, 2007, 7(6): 1728-1735.
[11] Verbridge S S, Parpia J M, Reichenbach R B, et al. High quality factor resonance at room temperature with nanostrings under high tensile stress. Journal of Applied Physics, 2006, 99(12): 124304.
[12] Kumar S, Haque M A. Reduction of thermo-elastic damping with a secondary elastic field. Journal of Sound and Vibration, 2018, 318(3): 423-427.
[13] Kumar S, Haque M A. Stress-dependent thermal relaxation effects in micro-mechanical resonators. Acta Mechanica, 2010, 212(1-2): 83-91.
[14] Kumar S, Alam T, Haque M A. Thermo-mechanical coupling and size effects in micro and nano resonators. Micro and Nano Systems Letters, 2013, 1(1): 1-9.
[15] Chen S Y, Niu X, Guo F L. Thermoelastic damping in micromechanical resonators operating as mass sensors. European Journal of Mechanics A-Solids, 2018, 71: 165-178.
[16] Hao Z. Thermoelastic damping in the contour-mode vibrations of micro- and nano-electromechanical circular thin-plate resonators. Journal of Sound and Vibration, 2008, 313(1-2): 77-96.
[17] Lifshitz R, Roukes M L. Thermoelastic damping in micro- and nanomechanical systems. Physical Review B, 2000, 61(8): 5600-5609.
[18] Petersen K E. Silicon as a mechanical material. MRS Proceedings, 1986, 76: 420-457.
[19] Ekinci K L, Yang Y T, Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. Journal of Applied Physics, 2004, 95(5): 2682-2689.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}