针对工业机器人用RV减速机传动误差所引起的动态失稳现象,在建立由驱动电机-RV减速机-负载所构成的机电耦合系统的基础上,同时考虑负载侧不宜安装传感器的限制条件,依据转矩波动引起转速波动的原理,将由状态观测器间接得到的能够反映转矩波动变化的状态变量——负载加速度变化率作为反馈控制量,对电磁转矩进行实时补偿。经系统的时频域性能分析证明,补偿后的电机转矩命令值抵消了转矩波动的影响,负载侧转速波动得到了很好的抑制,能够极大提高工业机器人在变工况下的动态工作精度。
Abstract
The dynamic instability of an industry robot is often influenced by the transmission error of its RV reducer.For analysing its mechanism, an electro-mechanical system comprised of motor, RV reducer and load was established.Considering the difficulty of attaching a sensor at the load side of the industry robot, and according to the principle that torque vibration causes rotating speed vibration, the derivative of acceleration at the load side which was derived by a state observer was taken as a feedback variable to compensate for the torque of the motor.The numerical results in time-domain and frequency-domain show that the compensated torque of motor can offset the torque vibration, and the speed vibration at the load side can be suppressed satisfactorily.The proposed system can improve the dynamic precision of industry robots when the working condition is suddenly changed.
关键词
RV减速机 /
观测器 /
扭转振动 /
工业机器人
{{custom_keyword}} /
Key words
RV reducer /
observer /
torsional vibration /
industry robot
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Day C P. Robotics in industry—Their role in intelligent manufacturing[J]. Engineering,2018,4(4):440-445.
[2] Amit S, Hamad K. Application of robotics in offshore oil and gas industry— A review Part II[J]. Robotics and Autonomous Systems, 2016,75:508-524.
[3] 庞哲楠,张国良,羊帆,等. 基于奇异摄动法的FFFSR全局滑模跟踪控制及ESO振动抑制[J]. 振动与冲击, 2016, 35(23): 14-22.
Pang Z N, Zhang G L, Yang F, et al. Global sliding mode tracking control and eso vibration suppression for free-floating flexible space robot based on singular perturbation method. Journal of Vibration and Shock,2016, 35(23): 14-22.
[4]Li X, Li C Y, Wang Y W, et al. Analysis of a cycloid speed reducer considering tooth profile modification and clearance-fit output[J]. Journal of Mechanical Design, 2017,139: 1-12.
[5] Han L S, Guo F. Global sensitivity analysis of transmission accuracy for RV-type cycloid-pin drive[J]. Journal of Mechanical Science and Technology,2016,30(3): 1225-1231.
[6] Lin W S, Shih Y P, Lee J J. Design of a two-stage cycloidal gear reducer with tooth modifications [J]. Mechanism and Machine Theory,2014,79:184-197.
[7] Wei B, Wang J X, Zhou G W, et al. Mixed lubrication analysis of modified cycloidal gear used in the RV reducer[J]. Journal of Engineering Tribology,2016,230(2):121-134.
[8] Luo S M, Liao L X, Wang J, et al. Study on inspection and avoidance of interferences in five-axis end milling of cycloidal gears[J]. International Journal of Advanced Manufacturing Technology,2017,91(9):1-8.
[9] Fang S P, Liu Y S, Wang H Y, et al. Research on the compensation method for the measurement error of cycloidal gear tooth flank[J].International Journal of Precision Engineering and Manufacturing,2014,15(10): 2065-2069.
[10] Iwasaki M, Yamamoto M, Hirai. H, et al. Compensation for synchronous component of angular transmission errors in harmonic drive gearings[C], The 11th IEEE International Workshop on Advanced Motion Control, Nagaoka, Japan,2010:361-365.
[11] 李辉. RV减速器传动误差建模与分析[D].北京:北方工业大学,2017.
Li H. Modeling and analysis of RV reducer transmission error. Beijing:North China University of Technology,2017.
[12] He W D, Shan L J. Research and analysis on transmission error of RV reducer used in robot [J]. Recent Advances in Mechanism Design for Robotics, Mechanisms and Machine Science,2015,33:231-238.
[13] Gandhi P S, Ghorbel F H. Closed-loop compensation of kinematic error in harmonic drives for precision control applications[J]. IEEE Transactions on Control Systems Technology,2002,10(6):759-768.
[14]王鑫鑫,闫晓强.基于扩张状态观测器的轧机振动抑振器研究[J]. 振动与冲击, 2019, 38(5): 1-6.
Wang X X, Yan X Q. Vibration suppressor of rolling mills based on extended state observer. Journal of Vibration and Shock, 2019, 38(5): 1-6.
[15] 张嗣瀛,高立群.现代控制理论[M].北京:清华大学出版社,2006.
Zhang S Y, Gao L Q. Modern control theory. Beijing:Tsinghua University Press,2006.
[16] Miyazaki T, Otaki S, Tungpataratanawong S, et al. High speed motion control method of industrial robot based on dynamic torque compensation and two-degrees-of-freedom control system[J]. Ieej Transactions on Sensors & Micromachines, 2003,123(5): 525-532.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}