开展温度损伤后的玄武岩纤维增强复合材料(BFRP)疲劳性能研究,对其在高温环境中的合理使用具有重要意义。提出改进单点-成组法,借助灰色理论GM(1,1)模型结合极值原理对疲劳S-N曲线三参数表达式进行回归分析,推导随应力水平变化的三参数Weibull概率密度函数,根据极大似然估计原理确定分布参数。通过非线性拟合方法建立综合考虑温度和可靠度影响的Weibull概率疲劳T-P- S-N模型。通过温度损伤后的BFRP筋疲劳性能试验研究温度损伤对其疲劳性能的影响,并验证理论模型。结果表明:BFRP筋疲劳寿命随温度和可靠度的升高疲劳寿命呈下降趋势,与实际相符;建议模型能较好描述BFRP筋疲劳性能随温度和可靠度的变化趋势。
Abstract
The fatigue property of basalt fiber reinforced composites (BFRP) with cumulative thermal damage was studied, which is of great significance for its proper use under high temperature condition.An improved Single Point Group method was proposed to do a regressive analysis on a three-parameter expression of the fatigue S-N curve.The gray theory GM (1,1) model and the extreme value principle were introduced to derive a three-parameter Weibull probability density function varying with corresponding stress level, and the distribution parameters were determined by the maximum likelihood estimation method.A Weibull probabilistic fatigue T-P-S-N model was established through the nonliear fitting, considering the comprehensive effect of temperature and reliability, which was then validated by using the fatigue test of a high temperature affected BFRP bar.The results demonstrate that the downtrend of fatigue life of BFRP bar can be apparently observed when the external temperature and reliability ascend, which corresponds well to the practical situation.The proposed model is able to properly describe the trend of fatigue behavior of BFRP with varied temperature and reliability.
关键词
BFRP筋 /
温度损伤 /
疲劳 /
可靠度 /
T-P-S-N模型
{{custom_keyword}} /
Key words
BFRP bar /
temperature damage /
fatigue /
reliability /
T-P-S-N model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DONG Zhiqiang, WU Gang, ZHAO Xiaoling,et al. A refined prediction method for the long-term performance of BFRP bars serviced in field environments[J].Construction and Building Materials, 2017, 155(155):1072-1080.
[2] ROTEM A, HASHIN Z. Fatigue failure of angle plylaminates[J]. AIAA Journal, 1976, 14(7) : 868-872.
[3] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973,7(10) : 448-464.
[4] 安宗文,高建雄,刘波.基于P-S-N曲线的强度退化随机 模型[J].计算力学学报,2015,32(01):118-122.
AN Zongwen, GAO Jianxiong, LIU Bo. Strength degradation stochastic model based on P-S-N curve[J]. Journal of Computational Mechanics, 2015,32(1): 118-122.
[5] LING Jing, PAN J. A maximum likelihood method for estimating P-S-N curves[J]. International Journal of Fatigue, 1997, 19(5) : 59-69.
[6] ZHANG Jing, QI Zhang, XU Zhezhu,et al. A Study on the Evaluation of BendingFatigue Strength for 20CrMoH Gear[J]. InternationalJournal of Precision Engineering and Manufacturing, 2013, 14 (8) : 1339-1343.
[7] LIU Fei, ZHOU Shiming, XIA Chengyu,et al. Optimization of fatigue life distribution model and establishment of probabilistic S-N curves for a 165ksi grade super high strength drill pipe steel[J]. Journal of Petroleum Science and Engineering, 2016, 145: 527-532.
[8] YANG Qianjin. Fatigue Test and Reliability Design of Gears[J]. International Journal of Fatigue, 1996, 18(3): 171-177.
[9] 傅惠民, 高镇同.确定威布尔分布三参数的相关系数优 化法[J].航空学报,1990(07) : 323-327.
FU Huimin, GAO Zhentong. An optimization method of correlation coefficient for determining a three-parameter weibull distribution[J]. Journal of Aeronautics, 1990 (07) : 323-327.
[10] 凌丹. 威布尔分布模型及其在机械可靠性中的应用研 究[D].电子科技大学,2011.
LING Dan. Research on weibull distribution and its application in mechanical reliability engineering[D]. Cheng Du:University of Electronic Science and technology,2011.
[11] 郑荣跃, 秦子增.S-N曲线拟合的灰色方法[J].国防科技 大学学报, 1989(03):84-88.
ZHENG Rongyue, QIN Zizeng. Grey method of S-N curve fitting [J]. Journal of National University of Defense Technology, 1989(03) : 84-88.
[12] 刘开昌. 玻璃钢材料疲劳极限的灰色预测[J]. 工程力 学, 1997(03): 118-123.
LIU Kaichang. The grey prediction of the fatigue limit for fiberglass cmplosite material[J]. Engineering Mechanics, 1997(03): 118-123.
[13] 张春涛,范文亮,李正良.腐蚀方式对Q345等边角钢疲劳性能的影响[J].工程力学,2013,30(10):211-218.
ZHANG Chuntao, FAN Wenliang, LI Zhengliang. Effects of Corrosion on Fatigue Property of Q345 Equal Angles[J]. Engineering Mechanics, 2013,30(10):211-218.
[14] NISHIJIMA S. Statistical analysis of small sample fatigue data[C]. Statistical research on fatigue and fracture. NewYork:Elsevier Applied Science,1987: 1-19.
[15] 熊峻江.疲劳断裂可靠性工程学[M].北京: 国防工业出 版社,2008: 60-98.
XIONG Junjiang. Fatigue and fracture reliability engineering[M]. Bei Jing: National Defense Industry Press,2008: 60-98.
[16] 高镇同,熊俊江.疲劳应用统计学[M].北京: 国防工业 出版社,1986: 82-162.
GAO Zhentong, XIONG Junjiang. Fatigue Application Statistics[M]. Bei Jing: National Defense Industry Press, 1986: 82-162.
[17] 陈传尧. 疲劳与断裂[M].武汉:华中科技大学出版社, 2002: 48-69.
CHEN Chuanyao. Fatigue and fracture[M]. Wu Han: Huazhong University of Science and Technology Pr ess, 2002.48-69.
[18] YAO Yiming, ZHU Deju, ZHANG Huaian,et al. Tensile Behaviors of Basalt, Carbon, Glass, and Aramid Fabrics under Various Strain Rates[J]. Journal of Materials in Civil Engineering, 2016, 28(9).
[19] 吴敬宇. 玄武岩纤维复合筋高温性能研究[D].哈尔滨: 中国地震局工程力学研究所,2011.
WU Jingyu. Study on the Performance of BFRP Rebarat Elevated Temperature[D]. Harbin: Institute of Engineering Mechanics, China Earthquake A dministration, 2011.
[20] LU Zhongyu, XIAN Guijun, LI Hui. Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates[J]. Construction and Building Materials, 2016, 127: 1029-1036.
[21] LIN Zhu, JIA Minping. Estimation study of structure crack propagation under random load based on multiple factors correction. [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 681-693.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}