具有多种平衡点类型的大范围混沌系统及其拓扑马蹄

徐昌彪1,钟德2,郭桃桃2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 235-241.

PDF(1630 KB)
PDF(1630 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 235-241.
论文

具有多种平衡点类型的大范围混沌系统及其拓扑马蹄

  • 徐昌彪1,钟德2,郭桃桃2
作者信息 +

A large range chaotic system with multiple types of equilibrium points and its topological horseshoe

  • XU Changbiao1, ZHONG De2, GUO Taotao2
Author information +
文章历史 +

摘要

提出了一个新的三维混沌系统。通过调节系统中的参数,使系统在保持混沌动力学行为的同时分别具有多种类型的平衡点,即一个不稳定平衡点、无平衡点、无穷平衡点和一个稳定平衡点。此外,随着参数和初始值的变化,发现系统是一个大范围的混沌系统,且在无对称性条件下具有共存吸引子。分析了系统的基本动力学行为,包括系统的相图、Lyapunov指数谱和分岔图。利用拓扑马蹄理论和数值计算,找到了系统的拓扑马蹄,并获得拓扑熵,进一步从理论上证明系统的混沌特性。

Abstract

A new three-dimensional chaotic system was proposed.By adjusting system parameters, the system may have multiple types of equilibrium points, such as an unstable equilibrium point, no equilibrium point, infinite equilibrium points and a stable equilibrium point, while maintaining its chaotic dynamical behaviors.In addition, with the change of parameters and initial values, it is found that the system is a large-scale chaotic system and has coexistence attractors under the condition of asymmetry.The system’s basic dynamic behaviors were analyzed by using the phase diagram, Lyapunov exponent spectrum and bifurcation diagram.By virtue of topological horseshoe theory and by means of numerical calculations, the system’s topological horseshoe and topological entropy were obtained, which further proves its chaotic characteristics in theory.

关键词

混沌系统 / 平衡点 / 大范围 / 拓扑马蹄

Key words

chaotic system / equilibrium point / large range / topological horseshoe

引用本文

导出引用
徐昌彪1,钟德2,郭桃桃2. 具有多种平衡点类型的大范围混沌系统及其拓扑马蹄[J]. 振动与冲击, 2020, 39(9): 235-241
A large range chaotic system with multiple types of equilibrium points and its topological horseshoe[J]. Journal of Vibration and Shock, 2020, 39(9): 235-241

参考文献

[1]李雄杰, 周东华.一种基于强跟踪滤波的混沌保密通信方法[J].物理学报, 2015, 64(14):65-71. LI Xiongjie, ZHOU Donghua.A method of chaotic secure communication based on strong tracking filter[J].Acta Physica Sinica, 2015, 64(14):65-71. [2]禹思敏, 吕金虎, 李澄清.混沌密码及其在多媒体保密通信中应用的进展[J].电子与信息学报, 2016, 38(3):735-752. YU Simin, L Jinhu, LI Chengqing.Some progresses of chaotic cipher and its applications in multimedia secure communications[J].Journal of Electronics & Information Technology, 2016, 38(3):735-752. [3]牛治东, 吴光强.电动汽车混沌振动信号的小波神经网络预测[J].振动与冲击, 2018, 37(8):19-25. NIU Zhidong, WU Guangqiang.Wavelet neural network prediction of electric vehicle chaotic vibration signals[J].Journal of Vibration and Shock, 2018, 37(8): 19-25. [4]李月, 石要武, 马海涛,等.湮没在色噪声背景下微弱方波信号的混沌检测方法[J].电子学报, 2004, 32(1):87-90. LI Yue, SHI Yaowu, MA Haitao, et al.Chaotic detection method for weak square wave signal submerged in colored noise[J].Acta Electronica Sinica, 2004, 32(1):87-90. [5]LORENZ N.Deterministic nonperiodic flow[J].Journal of the Atmospheric Sciences, 1963, 20: 130-141. [6]CHEN Guanrong, UETA T.Yet another chaotic attractor[J].International Journal of Bifurcation & Chaos, 1999, 9(7):1465-1466. [7]L Jinhu, CHEN Guanrong.A new chaotic attractor coined [J].International Journal of Bifurcation & Chaos, 2002, 12(3):659-661. [8]CHUA L O, KOMURO M, MATSUMOTO T.The double scroll family[J].IEEE Transactions on Circuits & Systems, 1986, 33(11):1072-1118. [9]LIU C, LIU T, LIU L, et al.A new chaotic attractor[J].Chaos Solitons & Fractals, 2004, 22(5):1031-1038. [10]LEONOV G A, KUZNETSOV N V, KUZNETSOVA O A, et al.Hidden oscillations in dynamical systems[J].Wseas Transactions on Systems & Control, 2011, 6(2):54-67. [11]LEONOV G A, KUZNETSOV N V, VAGAITSEV V I.Hidden attractor in smooth Chua systems[J].Physica D Nonlinear Phenomena, 2012, 241(18):1482-1486. [12]BREZETSKYI S, DUDKOWSKI D, KAPITANIAK T.Rare and hidden attractors in Van der Pol-Duffing oscillators[J].European Physical Journal Special Topics, 2015, 224(8):1459-1467. [13]ZHUSUBALIYEV Z T, MOSEKILDE E.Multistability and hidden attractors in a multilevel DC/DC converter[J].Mathematics & Computers in Simulation, 2015, 109:32-45. [14]ZHUSUBALIYEV Z T, MOSEKILDE E, RUBANOV V G, et al.Multistability and hidden attractors in a relay system with hysteresis[J].Physica D Nonlinear Phenomena, 2015, 306:6-15. [15]LEONOV G A, KUZNETSOV N V, KISELEVA M A, et al.Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor[J].Nonlinear Dynamics, 2014, 77(1/2):277-288. [16]WANG X, PHAM V T, JAFARI S, et al.A new chaotic system with stable equilibrium: from theoretical model to circuit implementation[J].IEEE Access, 2017(5):8851-8858. [17]WANG X, CHEN G.A chaotic system with only one stable equilibrium[J].Communications in Nonlinear Science & Numerical Simulation, 2012, 17(3):1264-1272. [18]KINGNI S T, JAFARI S, SIMO H, et al.Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form[J].European Physical Journal Plus, 2014, 129(5):1-16. [19]BARATI K, JAFARI S, SPROTT J C, et al.Simple chaotic flows with a curve of equilibria[J].International Journal of Bifurcation & Chaos, 2016, 26(12):511-543. [20]PHAM V T, JAFARI S, VOLOS C, et al.A chaotic system with infinite equilibria located on a piecewise linear curve[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(20):9111-9117. [21]孙常春, 陈仲堂, 侯祥林.具有无穷平衡点的新混沌系统动力学分析与振动控制[J].振动与冲击, 2017, 36(21):220-224. SUN Changchun, CHEN Zhongtang, HOU Xianglin.Dynamical analysis and vibration control of a novel chaotic system with infinite equilibria[J].Journal of Vibration and Shock, 2017, 36(21): 220-224. [22]PHAM V T, VOLOS C, JAFARI S, et al.Constructing a novel no-equilibrium chaotic system[J].International Journal of Bifurcation & Chaos, 2014, 24(5):1465-1473. [23]VAIDYANATHAN S, VOLOS C.Analysis and adaptive control of a novel 3D conservative no-equilibrium chaotic system[J].Archives of Control Sciences, 2015, 25(3):333-353. [24]XU Y, ZHANG M, LI C L.Multiple attractors and robust synchronization of a chaotic system with no equilibrium[J].Optik-International Journal for Light and Electron Optics, 2016, 127(3):1363-1367. [25]PHAM V T, JAFARI S, VOLOS C, et al.A chaotic system with rounded square equilibrium and with no-equilibrium[J].Optik-International Journal for Light and Electron Optics, 2017, 130:365-371. [26]PHAM V T, JAFARI S, VOLOS C, et al.Different families of hidden attractors in a new chaotic system with variable equilibrium[J].International Journal of Bifurcation & Chaos, 2017, 27(9):1750138. [27]QUAN Y, YANG X.Review of dynamical complexity research based on topological horseshoe theory[C]// Control Conference, 2008.CCC.IEEE, 2008:544-547. [28]LI Q D, YANG X S.Progresses on chaotic dynamics study with topological horseshoes[J].J Dyn Control, 2012, 10(4):293-298. [29]LI Q D, ZHAO W B, YANG F Y.3D topological horseshoes with 1-directional expansion and application in compass walking model[J].Chin J Comput Phy, 2016, 33(1):108-116. [30]ZENG H Z, YANG F Y.Topological horseshoe in a chaotic system with no equilibria[J].Mathematical Computation, 2014, 3(2):63-67.

PDF(1630 KB)

527

Accesses

0

Citation

Detail

段落导航
相关文章

/