障板上矩形薄板在浅水环境中的振动及声辐射解析分析

孙瑶1,沈那伟1,包振明1,杨铁军2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 242-247.

PDF(977 KB)
PDF(977 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 242-247.
论文

障板上矩形薄板在浅水环境中的振动及声辐射解析分析

  • 孙瑶1,沈那伟1,包振明1,杨铁军2
作者信息 +

Theoretical analysis on the vibration and sound radiation of a rectangular plate facing finite depth of water

  • SUN Yao1, SHEN Nawei1, BAO Zhenming1, YANG Tiejun2
Author information +
文章历史 +

摘要

通过推导得到浅水环境中矩形板声辐射阻抗矩阵的解析表达,进一步结合振动假设模态方法及辐射表面单元辐射器思想求解浅水环境中矩形板的振动响应,分析水深对矩形板模态附加质量的影响,给出矩形板模态附加质量随水深的变化情况,得到波导模态的激发对附加质量的影响,并通过对辐射抗矩阵的特征分析得到附加质量在板上分布的主要模式;进一步结合声辐射模态辐射效率,分析水深变化对矩形板振动响应峰值及远场声辐射的影响,分析结果表明:水深度变化对振动响应峰值及声辐射功率的影响与第1阶声辐射模态的辐射效率随深度的变化具有一致性。

Abstract

The sound radiation impedance matrix of a rectangular plate facing shallow water was derived analytically. By the eigen-value decomposition technique, the sound radiation modes and their radiation efficiencies were obtained and used to study the sound radiation characteristics of the plate in shallow water.The effect of water depth on the sound radiation and modal added mass was discussed.The results show that underwater natural frequencies of the plate are related to the distribution of added mass while the variation of radiation efficiencies of radiation modes in different depth of water will influence the sound radiation.

关键词

浅水环境 / 矩形板振动 / 声辐射

Key words

shallow water / vibration of plate / sound radiation

引用本文

导出引用
孙瑶1,沈那伟1,包振明1,杨铁军2. 障板上矩形薄板在浅水环境中的振动及声辐射解析分析[J]. 振动与冲击, 2020, 39(9): 242-247
SUN Yao1, SHEN Nawei1, BAO Zhenming1, YANG Tiejun2. Theoretical analysis on the vibration and sound radiation of a rectangular plate facing finite depth of water [J]. Journal of Vibration and Shock, 2020, 39(9): 242-247

参考文献

[1] Junger M C, Feit D. Sound, Structures, and Their Interaction, 2nd edition[M]. MIT Press, Cambridge, MA, 1986. [2] Wallace C. Radiation resistance of a rectangular panel[J]. The Journal of the Acoustical Society of America, 1972, 51(3B): 946-52P [3] Zhang X, Li W L. A unified approach for predicting sound radiation from baffled rectangular plates with arbitrary boundary conditions[J]. Journal of Sound and Vibration, 2010, 329(25): 5307-20P [4] Berry A. A new formulation for the vibrations and sound radiation of fluid-loaded plates with elastic boundary conditions[J]. Journal of the Acoustical Society of America, 1994, 96, 889–901. [5] Fahy F Y. Sound and Structural Vibration: Radiation, Transmission and Response[M]. Academic Press,1987. [6] 沈苏, 刘碧龙, 李晓东. 简支矩形板辐射抗的快速计算研究[C]. 2006年全国声学学术会议论文集. 北京:中国声学学会,2006. 321-322. Shen S, Liu B L, Li X D. Fast evaluation of radiation reactance of a simply supported rectangular panel[C]. Proceedings of National conference on acoustics. Acoustical Society of China, 2006. 321-322. [7] 陈美霞, 邱昌林, 骆东平. 基于FEM/BEM法的内部声激励水下圆柱壳声辐射计算[J]. 中国舰船研究, 2007, 2(6):50-54. Chen M X, Qiu C L, Luo D P. Sound radiation analysis of submerged cylindrical shell with interior point source based on FEM/BEM method. Chinese Journal of Ship research[J], 2007, 2(6):50-54. [8] 黎胜, 杨婧媛. 水下加筋板振动声辐射的代理模型研究[J]. 声学学报, 2010(6):659-664. Li S, Yang J Y. Research on surrogate models for structural vibration and acoustic radiation of stiffened plates. ACTA ACOUSTICA[J], 2010(6):659-664. [9] Borgiotti G V. The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurements[J]. The Journal of the Acoustical Society of America, 1990, 88(4): 1884-93P [10] Elliott S J, Johnson M. Radiation modes and the active control of sound power[J]. The Journal of the Acoustical Society of America, 1993, 94(4): 2194-204P [11] Lee Y S, Gardonio P, Elliott S J. Volume velocity vibration control of a smart panel using a uniform force actuator and an accelerometer array[J]. Smart Materials and Structures, 2002,11: 863–873. [12] 张军, 姜哲. 基于声辐射模态的有源结构声辐射系统鲁棒H∞控制[J]. 振动与冲击, 2010, 29(4):135-137. Zhang J, Jiang Z. Robust H∞ control for an active structural acoustic control system based on radiation modes. Journal of vibration and shock[J] , 2010, 29(4):135-137. [13] Schroter V, Fahy F J. Radiation from modes of a rectangular panel into a coupled fluid layer[J]. Journal of Sound and Vibration, 1981,74: 575–587. [14] Li W L , Zhang X , Du J , et al. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration, 2009, 321(1):254-269. [15] 任惠娟, 盛美萍. 加筋矩形薄板的平均声辐射效率[J]. 振动与冲击, 2016, 35(20):167-171. Ren H J, Sheng M P. The average radiation efficiency of a rectangular stiffened thin plate. Journal of vibration and shock[J], 2016, 35(20):167-171. [16] 朱大巍,黄修长, 华宏星等.敷设手性覆盖层加筋梁低频振动和声辐射特性[J].振动与冲击, 2014, 33( 11) : 178 -183. ZHU Dawei,HUANG Xiuchang,HUA Hongxing,et al. Vibration and acoustic radiation characteristics of a stiffened beam with a chiral covering layer[J]. Journal of Vibration and Shock,2014, 33( 11) : 178 - 183. [17] Ojeda R , Prusty B G , Lawrence N , et al. A new approach for the large deflection finite element analysis of isotropic and composite plates with arbitrary orientated stiffeners[J]. Finite Elements in Analysis & Design, 2007, 43(13):989-1002. [18] Gu Y , Fuller C R . Active control of sound radiation from a fluid-loaded rectangular uniform plate[J]. The Journal of the Acoustical Society of America, 1993, 93(1):337.

PDF(977 KB)

342

Accesses

0

Citation

Detail

段落导航
相关文章

/