基于社会力模型的人群-桥梁竖向动力耦合效应研究

张琼1,南娜娜1,朱前坤1,2,杜永峰1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 71-79.

PDF(1944 KB)
PDF(1944 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 71-79.
论文

基于社会力模型的人群-桥梁竖向动力耦合效应研究

  • 张琼1,南娜娜1,朱前坤1,2,杜永峰1,2
作者信息 +

Analysis on the vertical coupled dynamic effect of a crowd-bridge system based on the social force model

  • ZHANG Qiong1, NAN Nana1, ZHU Qiankun1,2, DU Yongfeng1,2
Author information +
文章历史 +

摘要

针对越来越多的轻质柔性人行桥在随机人群荷载作用下的结构振动问题,为了能够获得更为真实、精细的振动响应,建立考虑人群-结构相互作用的随机人群荷载模型尤为重要。首先利用移动弹簧-质量-阻尼模型模拟单人的动力学行为,并基于社会力模型,建立人群的随机运动模型,进而建立考虑人群-结构耦合振动的随机人群荷载模型。根据任意时刻人行桥和随机人群动力平衡,建立随机人群-人行桥耦合振动的控制方程。利用状态空间法求解人行桥动力参数随随机人群运动的变化情况,利用振型分解法求解耦合振动控制方程,探讨考虑人群-结构耦合振动的随机人群荷载对人行桥模态以及振动响应的影响。分析结果表明耦合系统模态变化量随着人数增加而增加。行人随机性与人群-结构相互作用对轻质结构的竖向动力响应影响很大,故在计算轻质结构振动响应时不可忽略。相比于加速度峰值,均方根加速度能够弱化随机波动的干扰作用,因此也采用了1-s均方根加速度更合理地衡量了结构的振动响应。

Abstract

For more and more structural vibration problems of lightweight flexible footbridges under random crowd loading, it is particularly important to establish a stochastic crowd model considering the crowd-structure interaction in order to obtain more realistic and accurate vibration responses.A moving spring-mass-damping model was used to simulate the dynamical characters of a single pedestrian, and the movement model of a random crowd was established based on the social force model.Then a random crowd load model considering the crowd-structure coupled vibration was built.According to the dynamic balance of the pedestrian bridge and the random crowd at any time, the control equation for the coupled vibration of the crowd and the bridge was established.The variation of footbridge dynamic parameters in pace with the crowd motion was solved by the state space method and the control equation for the coupled vibration was solved by the mode decomposition method.The influence of random crowd load on the modal and vibration responses of the pedestrian bridge considering crowd-structure coupled vibration was discussed.The results show that the modal variation of the coupled system increases along with the increase of pedestrians.The pedestrian-structure interaction and pedestrian randomness are of marked effect on vertical dynamic responses so they should not be ignored while analysing the vibration of light-weight footbridges.Compared with the peak acceleration, the RMS acceleration can weaken the disturbance of random fluctuation, so 1-s RMS acceleration is more reasonable to be used in measuring structural vibration responses.

关键词

人行桥 / 人群-桥梁耦合系统 / 社会力模型 / 模态分析 / 动力响应分析

Key words

light-weight footbridge / crowd-bridge coupled system / social force model / modal analysis / dynamic response analysis

引用本文

导出引用
张琼1,南娜娜1,朱前坤1,2,杜永峰1,2. 基于社会力模型的人群-桥梁竖向动力耦合效应研究[J]. 振动与冲击, 2020, 39(9): 71-79
ZHANG Qiong1, NAN Nana1, ZHU Qiankun1,2, DU Yongfeng1,2. Analysis on the vertical coupled dynamic effect of a crowd-bridge system based on the social force model[J]. Journal of Vibration and Shock, 2020, 39(9): 71-79

参考文献

[1] Brownjohn J M W, Fu T N. Vibration excitation and control of a pedestrian walkway by individuals and crowds[J]. Shock & Vibration, 2005,12(5):333-347. [2] Bodgi J, Erlicher S, Argoul P. Lateral vibration of footbridges under crowd-loading: continuous crowd modeling approach[C]//Key Engineering Materials. Trans Tech Publications, 2007, 347: 685-690. [3] 朱前坤, 李宏男, 杜永峰,等. 不同行走步速下人行桥振动舒适度定量化评估[J]. 工程力学, 2016, 33(10):97-104. Zhu Qian-kun, Li Hong-nan, Du Yong-feng,et al. QUANTITATIVE EVALUATION OF VIBRATION SERVICEABILITY OF PEDESTRIAN BRIDGE UNDER DIFFERENT WALKING SPEED. ENGINEE- RING MECHANICS, 2016, 33(10):97-104. [4] 朱前坤,刘路路,杜永峰,等.考虑行人-结构相互作用的悬挑钢筋桁架楼承板振动控制研究[J].建筑结构学报,2018,39(01):99-108. ZHU Qiankun, LIU Lulu, DU Yongfeng et al. Human-induced vibration and control for cantilever steel bar truss deck slab based on pedestrian-structure interaction. Journal of Building Structure, 2018, 39(01): 99-108. [5] Zhu Qian-kun,Li Hong-nan, Nan Na-na,et al. Vibration control of pedestrian-bridge vertical dynamic coupling interaction based on biodynamic model [J]. Journal of Southeast University (English Edition),2017,vol.33,NO.2, pp.209-215. [6] 秦敬伟, 杨庆山. 基于双足步行模型和反馈机制的人体-结构相互作用[J]. 建筑结构学报, 2014, 35(s1):18-24. Qin Jing-wei, Yang Qing-san. Human-structure interaction based on bipedal walking model and feedback mechanism[J].Journal of Building Structures,2014, 35(s1):18-24 [7] Caprani C C, Ahmadi E. Formulation of human–structure interaction system models for vertical vibration[J]. Journal of Sound & Vibration, 2016, 377:346-367. [8] Gao Y A, Wang J, Liu M. The Vertical Dynamic Properties of Flexible Footbridges under Bipedal Crowd Induced Excitation[J]. Applied Sciences, 2017, 7(7):677. [9] 李红利, 陈政清. 考虑荷载随机性的人行桥人致振动计算方法研究[J]. 湖南大学学报(自科科学版), 2013, 40(10):22-31. Li Hong-li, Chen Zheng-qing. A Calculation for Foot- bridge Vibration under Stochastic Pedestrian Loading [J]. Journal of Hunan University,2013, 40(10):22 -31. [10] 丁国, 陈隽. 行人荷载随机性对楼盖振动响应的影响研究[J]. 振动工程学报, 2016, 29(1):123-131. Ding Guo, Chen Jun. Influence of walking load randomness on vibration responses of long-span floors[J]. Journal of Vibration Engineering,2016, 29(1):123-131. [11] 杨娜, 邱雪. 人群集度荷载模型及人致振动模拟分析[J]. 北京交通大学学报, 2016, 40(3):88-96. Yang Na, Qiu Xue. Crowd density load model and analysis of crowd-induced vibration[J],Jounal of Beijing Jiaotong University. 2016,40(3):88-96. [12] Helbing D, Buzna L, Johansson A, et al. Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions[J]. Transportation Science, 2005, 39(1):1-24 [13] Moussaïd M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters [J]. Proceedings of the National Academy of Sciences, 2011, 108(17): 6884-6888. [14] 高延安, 杨庆山. 行走人群-结构相互作用模型研究[J]. 振动与冲击, 2016, 35(23):153-159. GAO Yan-an, YANG Qing-shan. A walking crowd-structure interaction model[J]. Journal of vibration and shock,2016,35(23): 153-159. [15] 陈舟,颜全胜,邓德员,等.人群激励下人行桥非线性横向参数振动研究[J].振动与冲击,2018,37(21):46-51. Chen Zhou,Yan Quan-sheng,Deng De-yuan,et al. Footbridge nonlinear lateral parametric vibration under crowd excitation[J]. Journal of vibration and shock, 2018,37(21):46-51. [16] F. T. Silva and R. L. Pimentel, “Biodynamic walking model for vibration serviceability of footbridges in vertical direction,” in Proceeding of the 8th International Conference on Structural Dynamics (Eurodyn ’11), pp. 1090–1096, Leuven, Belgium, 2011. [17] Bruno L, Venuti F. Crowd-structure interaction in footbridges: Modelling, application to a real case-study and sensitivity analyses[J]. Journal of Sound & Vibration, 2009, 323(1):475-493. [18] Parisi D R, Gilman M, Moldovan H. A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions[J]. Physica A Statistical Mechanics & Its Applications, 2009, 388(17):3600-3608. [19] Živanović S, Pavić A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation[J]. Engineering Structures, 2007, 29(6): 942-954. [20] Lievens K. Robust vibration serviceability assessment and design of footbridges under walking loading[J]. 2018. [21] Henderson L F. On the fluid mechanics of human crowd motion[J]. Transportation Research, 1974, 8(6):509-515 [22] 叶建红. 行人交通行为与交通流特性研究[D]. 同济大学, 上海,2009. Ye Jian-hong. Study on pedestrian traffic behavior and traffic flow characteristics[D]. Tongji University,Shanghai, 2009. [23] Shahabpoor E, Pavic A, Racic V, et al. Effect of group walking traffic on dynamic properties of pedestrian structures[J]. Journal of Sound & Vibration, 2016, 387:207-225.

PDF(1944 KB)

Accesses

Citation

Detail

段落导航
相关文章

/