二维非线性单原子正方晶格色散摄动分析

王杰1,朱江1,黄文博1,何欢1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 88-96.

PDF(2048 KB)
PDF(2048 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (9) : 88-96.
论文

二维非线性单原子正方晶格色散摄动分析

  • 王杰1,朱江1,黄文博1,何欢1,2
作者信息 +

Perturbation analysis on the dispersion relations of a two-dimensional nonlinear single atom square lattice

  • WANG Jie1, ZHU Jiang1, HUANG Wenbo1, HE Huan1,2
Author information +
文章历史 +

摘要

声子晶体的色散关系决定弹性波在其中的传播方式。从二维无限周期结构的波动方程出发,提出了一种分析非线性离散型声子晶体的色散关系的一阶近似摄动法。通过引入Bloch理论与小参数摄动展开法,得到了一阶近似的色散关系与频散曲线,以分析不同方向上的阻抗配置与非线性系数对频散及群速度的影响。以二维单原子正方晶格为例,得到了其一阶频散曲线。色散结果显示带隙及传播方向与波幅相关。最后模拟了晶格对点谐波激励的响应,以验证摄动分析有效性。

Abstract

The dispersion relation of phononic crystals determines the propagation mode of elastic waves.Starting from the wave equation of a two-dimensional infinite periodic structure, a first-order approximate perturbation method for analyzing the dispersion relation of nonlinear discrete phononic crystals was proposed.Based on the Bloch theory and small parametric perturbation expansion method, the first-order dispersion relations and dispersion curves were obtained to analyze the effects of impedance configuration and nonlinear coefficient on the dispersion and group velocity in different directions.Two-dimensional single-atom lattices were used as examples.Their first-order dispersion curves and group velocity contours were presented.The dispersion results reveal that the band gap and direction of propagation are related to the amplitude of waves.Finally, the response of the lattice to the point harmonic force was simulated to verify the effectiveness of the perturbation analysis.

关键词

声子晶体 / 单原子正方晶格 / 弱非线性 / 摄动法 / 色散关系

Key words

sonic crystal / single atom square lattice / weak nonlinear / perturbation analysis / dispersion

引用本文

导出引用
王杰1,朱江1,黄文博1,何欢1,2. 二维非线性单原子正方晶格色散摄动分析[J]. 振动与冲击, 2020, 39(9): 88-96
WANG Jie1, ZHU Jiang1, HUANG Wenbo1, HE Huan1,2. Perturbation analysis on the dispersion relations of a two-dimensional nonlinear single atom square lattice[J]. Journal of Vibration and Shock, 2020, 39(9): 88-96

参考文献

[1] 张研. 声子晶体的计算方法与带隙特性[M]. 北京: 科学出版社, 2015:1-4; Zhang Y. Calculation method and band gap characteristics of phononic crystals[M]. Beijng: Science Press, 2015:1-4. [2] Hussein M I, Leamy M J, Ruzzene M. Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook[J]. Applied Mechanics Reviews, 2014, 66(4):040802. [3] Su X X, Wang Y F, Wang Y S. Effects of Poisson’s ratio on the band gaps and defect states in two-dimensional vacuum/solid porous phononic crystals[J]. Ultrasonics, 2012, 52(2):255-265. [4] Salman A, Kaya O A, Cicek A. Determination of concentration of ethanol in water by a linear waveguide in a 2-dimensional phononic crystal slab[J]. Sensors and Actuators A: Physical, 2014, 208:50-55. [5] Wu L, Chen L. An acoustic bending waveguide designed by graded sonic crystals[J]. Journal of Applied Physics, 2011,110:114507. [6] Zhou X M, Liu X N, Hu G K. Elastic metamaterials with local resonances: an overview[J]. Theoretical and Applied Mechanics Letters, 2012, 2(4):041001. [7] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059. [8] Sheng P, Zhang X X, Liu Z, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [9] Phani A S, Woodhouse J, Fleck N A. Wave propagation in two-dimensional periodic lattices[J]. Journal of the Acoustical Society of America, 2006, 119(4): 1995-2005. [10] Scarpa F L, Ruzzene M, Soranna F. Wave beaming effects in bidimensional cellular structures[C]. Smart Structures and Materials 2002: Damping and Isolation, 2002: 63-77. [11] Ruzzene M, Tsopelas P. Control of wave propagation in sandwich plate rows with periodic honeycomb core[J]. Journal of Engineering Mechanics, 2003, 129(9): 975-986. [12] Hussein M I. Theory of damped bloch waves in elastic media[J]. Physical Review B, 2009, 80(21):308-310. [13] Hussein M I, Frazier M J. Band structure of phononic crystals with general damping[J]. Journal of Applied Physics, 2010, 108(9):2022. [14] Langley R S. The response of two-dimensional periodic structures to point harmonic forcing[J]. Journal of Sound & Vibration, 1996, 197(4): 447-469. [15] 温激鸿, 王刚, 刘耀宗,等. 基于集中质量法的一维声子晶体弹性波带隙计算[J]. 物理学报, 2004, 53(10):3384-3388. WEN J H,WANG G,LIU Y Z,et al. Calculation of elastic wave band gap of one-dimensional phononic crystal based on lumped mass method[J]. Acta Physica Sinica, 2004, 53(10):3384-3388. [16] Pankov A. Travelling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices [M]. Imperial College Press, 2005: xvi. [17] Sreelatha K S, Joseph K B. Wave propagation through a 2D lattice[J]. Chaos Solitons & Fractals, 2000, 11(5):711-719. [18] Kartashov Y V, Malomed B A, Torner L. Solitons in nonlinear lattices[J]. Review of Modern Physics, 2011, 83(1):247-306. [19] Narisetti R K, Ruzzene M, Leamy M J. A Perturbation Approach for Analyzing Dispersion and Group Velocities in Two-Dimensional Nonlinear Periodic Lattices[J]. Journal of Vibration and Acoustics, 2011, 133(6):061020. [20] Manktelow K L , Leamy M J , Ruzzene M . Weakly nonlinear wave interactions in multi-degree of freedom periodic structures[J]. Wave Motion, 2014, 51(6):886-904. [21] Narisetti R K . Wave propagation in nonlinear periodic structures[J]. Dissertations & Theses - Gradworks, 2010. [22] Lazarov B S, Jakob Søndergaard Jensen. Low-frequency band gaps in chains with attached non-linear oscillators[J]. International Journal of Non-Linear Mechanics, 2007, 42(10):1186-1193. [23] Manktelow K, Narisetti R K, Leamy M J, et al. Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures[J]. Mechanical Systems & Signal Processing, 2013, 39(1-2):32-46. [24] Fang X, Wen J H, Yin J F, et al. Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: Theoretical study[J]. Physical Review E, 2016, 94(5):052206. [25] Pal R K, Vila J, Leamy M, et al. Amplitude-dependent topological edge states in nonlinear phononic lattices[J]. Physical Review E, 2018, 97(3):032209. [26] 陈志远, 张全坤, 谢菊芳. 计及次近邻作用二维单原子正方晶格振动的色散关系[J]. 湖北大学学报(自然科学版), 2013, 35(4): 507-512. CHEN Zhi-yuan, ZHANG Quan-kun, XIE Ju-fang. Dispersion relation of two-dimensional monatomic square Lattice vibration with the secondary neighbor coupling[J]. Journal of Hubei University(Natural Science),2013,35(4):507-512. [27] Duan W S, Shi Y R, Zhang L, et al. Coupled nonlinear waves in two-dimensional lattice[J]. Chaos Solitons & Fractals, 2005, 23(3):957-962. [28] He J H. Modified Lindstedt–Poincare methods for some strongly non-linear oscillations: Part I: expansion of a constant[J]. International Journal of Non-Linear Mechanics, 2002, 37(2):309-314. [29] Wang Y Z, Li F M, Wang Y S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain[J]. International Journal of Mechanical Sciences, 2016, 106:357-362. [30] Fang X, Wen J H, Yin J F, et al. Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method[J]. Aip Advances, 2016, 6(12):121706. [31] Diez A, Kakarantzas G, Birks T A, et al. Acoustic stop-bands in periodically microtapered optical fibers[J]. Applied Physics Letters, 2000, 76(23):3481-3483.

PDF(2048 KB)

Accesses

Citation

Detail

段落导航
相关文章

/