[1]刘亚.数据驱动的滚动轴承故障诊断与健康状态评估[D].济南:山东大学,2019.
[2]RAI A, UPADHYAY S H.A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings[J].Tribology International, 2016,96: 289-306.
[3]梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1995.
[4]俞培松.滚动轴承振动故障诊断技术的研究及其实际应用[D].上海:同济大学,2007.
[5]TAMILSELVAN P, WANG P F.Failure diagnosis using deep belief learning based health state classification[J].Reliability Engineering & System Safety, 2013,115: 124-135.
[6]杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1): 85-88.
YANG Yu, YU Dejie, CHENG Junsheng.Roller bearing fault diagnosis method based on EMD and neural network[J].Journal of Vibration and Shock, 2005,24(1): 85-88.
[7]杜小磊,陈志刚,许旭,等.基于小波卷积自编码器和LSTM网络的轴承故障诊断研究[J].机电工程,2019,36(7): 663-668.
DU Xiaolei, CHEN Zhigang, XU Xu, et al.Fault diagnosis of bearing based on wavelet convolutional auto-encoder and LSTM network[J].Journal of Mechanical & Electrical Engineering, 2019,36(7): 663-668.
[8]张伟.基于卷积神经网络的轴承故障诊断算法研究[D].哈尔滨:哈尔滨工业大学,2017.
[9]李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19): 124-131.
LI Heng, ZHANG Qing, QIN Xianrong, et al.Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J].Journal of Vibration and Shock, 2018,37(19): 124-131.
[10]PAN H H, HE X X, TANG S, et al.An improved bearing fault diagnosis method using one-dimensional CNN and LSTM[J].Journal of Mechanical Engineering, 2018,64(7/8): 443-452.
[11]张立智,井陆阳,徐卫晓,等.基于卷积降噪自编码器和CNN的滚动轴承故障诊断[J].组合机床与自动化加工技术,2019(6): 58-62.
ZHANG Lizhi, JING Luyang, XU Weixiao.Fault diagnosis of rolling bearing based on convolutional denoising auto-encoder and CNN[J].Modular Machine Tool & Automatic Manufacturing Technique, 2019(6): 58-62.
[12]赵志成,罗泽,王鹏,等.基于深度残差网络图像分类算法研究综述[J].计算机系统应用,2020,29(1): 14-21.
ZHAO Zhicheng, LUO Ze, WANG Peng, et al.Survey on image classification algorithms based on deep residual network[J].Computer Systems & Applications, 2020,29(1): 14-21.
[13]安晶,艾萍,徐森,等.一种基于一维卷积神经网络的旋转机械智能故障诊断方法[J].南京大学学报(自然科学), 2019,55(1): 133-142.
AN Jing, AI Ping, XU Sen, et al.An intelligent fault diagnosis method for rotating machinery based on one dimensional convolution neural network[J].Journal of Nanjing University (Natural Science), 2019,55(1): 133-142.
[14]赵璐,马野.基于一维卷积神经网络的齿轮箱故障诊断研究[J].测试技术学报,2019,33(4): 302-306.
ZHAO Lu, MA Ye.Fault diagnosis of gear box based on one-dimensional convolutional neural networks[J].Journal of Test and Measurement Technology, 2019,33(4): 302-306.
[15]曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报,2018,39(7): 134-143.
QU Jianling, YU Lu, YUAN Tao.Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J].Chinese Journal of Scientific Instrument, 2018,39(7): 134-143.
[16]陈伟.深度学习在滚动轴承故障诊断中的应用研究[D].成都:西南交通大学,2018.
[17]HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas: IEEE, 2016.
[18]刘建伟,赵会丹,罗雄麟,等.深度学习批归一化及其相关算法研究进展[J].自动化学报, 2020,46(6): 1090-1120.
LIU Jianwei, ZHAO Huidan, LUO Xionglin, et al.Research progress on batch normalization of deep learning and its related algorithms[J].Acta Automatica Sinica, 2020,46(6): 1090-1120.
[19]BJORCK N, GOMES C, SELMAN B, et al.Understanding batch normalization[C]//32nd Conference on Neural Information Processing Systems.Montréal: NeurIPS, 2018.
[20]HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science, 2012,3(4): 212-223.
[21]MAATEN L, HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research, 2008,9: 2579-2605.