基于双结构深度学习的滚动轴承故障智能诊断

齐咏生1,2,郭春雨1,2,师芳1,2,高胜利3,李永亭1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 103-113.

PDF(2014 KB)
PDF(2014 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 103-113.
论文

基于双结构深度学习的滚动轴承故障智能诊断

  • 齐咏生1,2,郭春雨1,2,师芳1,2,高胜利3,李永亭1,2
作者信息 +

Intelligent diagnosis algorithm for rolling element bearings faults based on dual structure deep learning

  • QI Yongsheng1,2,GUO Chunyu1,2,SHI Fang1,2,GAO Shengli3,LI Yongting1,2
Author information +
文章历史 +

摘要

大型转动机械在工业生产过程中,轴承故障频发,呈现出一种“大数据”的特性,并且现场获取的故障数据往往是不完备和无标签的,亟需开发具有自学习能力的诊断算法。针对该研究提出一种基于双结构深度学习的轴承故障类型与损伤程度的智能诊断算法。该方法使用不完备的数据建模,分为故障类型自学习网络和故障损伤等级识别网络两个结构。对轴承故障信号进行形态学滤波,抑制部分噪声,增强信号的脉冲特征;对消噪后信号进行S变换得到时频图,获取故障类型的共性特征;并将时频图作为卷积神经网络(CNN)的输入,利用网络的相似性度量在目标空间对同类型样本汇聚、不同类型样本分离,实现对轴承故障类型的分类与新故障类型的自学习。将实现故障类型分类的信号经归一化处理后作为深度置信网络(DBN)的输入,利用DBN对微小故障的敏感性对不同损伤程度的差异特征进行提取,之后将提取的特征作为贝叶斯分类器的输入,依据后验概率判别规则实现故障损伤等级自主识别。将该方法应用于西储大学实验平台的滚动轴承故障数据,结果表明,该方法在不完备数据建模的情况下,不仅能完成故障类型与损伤等级的准确分类,而且还能实现故障自学习和损伤等级自增长,增强了诊断过程的智能性。

Abstract

An intelligent diagnosis algorithm was presented based on double structure deep learning to identify the bearing fault type and damage degree.In the method, an incomplete data model was used and divided into two structures: fault type self-learning network and fault damage degree identification network.In the first structure, the faulty signal was filtered by morphology to suppress some noises and enhance the impulse components.Then, the filtered signal was transformed by S-transform to obtain a time-frequency graph, and obtain the common features of the fault type.The time-frequency graph was used as the input of a convolution neural network (CNN) to gather the same type of samples and separate the different types of samples in the target space by virtue of the similarity of the network, and further to realize the classification of bearing fault types and the self-learning of new fault types.In the second structure, the signals of known fault types were employed as the input of a deep belief network (DBN) after normalization, in order to extract the different features of different damage degrees.Subsequently, the extracted features were utilized as the input of a Bayesian classifier to automatically recognize the fault damage degree according to the posterior probability classification rules.In the end, the proposed method was validated using the bearing fault data acquired by the Bearing Data Center supported by the Case Western Reserve.The results show the proposed method can not only accurately identify fault type and damage degree, but also realize fault type  self-learning and damage degree self-growth under the condition of incomplete data modeling, and enhance the intelligence of the diagnosis procedure.

关键词

卷积神经网络(CNN) / 深度置信网络(DBN) / 贝叶斯分类器 / 滚动轴承 / 相似性度量 / 不完备数据建模

Key words

convolutional neural network(CNN) / deep belief network(DBN) / Bayesian classifier / rolling bearing / similarity measurement / incomplete data modeling

引用本文

导出引用
齐咏生1,2,郭春雨1,2,师芳1,2,高胜利3,李永亭1,2. 基于双结构深度学习的滚动轴承故障智能诊断[J]. 振动与冲击, 2021, 40(10): 103-113
QI Yongsheng1,2,GUO Chunyu1,2,SHI Fang1,2,GAO Shengli3,LI Yongting1,2.
Intelligent diagnosis algorithm for rolling element bearings faults based on dual structure deep learning
[J]. Journal of Vibration and Shock, 2021, 40(10): 103-113

参考文献

[1]HOANG D T, KANG H J.Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J].Cognitive Systems Research, 2018,53(3): 42-50.
[2]WEN L, LI X, GAO L, et al.A new convolutional neural network based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics, 2017,65(7): 5990-5998.
[3]LU C, WANG Z Y, ZHOU B.Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J].Advanced Engineering Informatics, 2017,32: 139-151.
[4]陶洁, 刘义伦, 杨大炼,等.基于细菌觅食决策和深度置信网络的滚动轴承故障诊断[J].振动与冲击, 2017,36(23): 68-74.
TAO Jie, LIU Yilun, YANG Dalian, et al.Rolling bearing fault diagnosis based on bacterial foraging algorithm and deep belief network[J].Journal of Vibration and Shock, 2017,36(23): 68-74.
[5]SHAO H D, JIANG H K, ZHANG X, et al.Rolling bearing fault diagnosis using an optimization deep belief network[J].Measurement Science and Technology, 2015,26(11): 115002.
[6]TAMILSELVAN P, WANG P F.Failure diagnosis using deep belief learning based health state classification[J].Reliability Engineering and System Safety, 2013,115(7): 124-135.
[7]YANG D L, LIU Y L, LI S B, et al.Fatigue crack growth prediction of 7075 aluminum alloy based on the GMSVR model optimized by the artificial bee colony algorithm[J].Engineering Computations, 2017,34(4): 1034-1053.
[8]MA M, CHEN X F, WANG S B, et al.Bearing degradation assessment based on weibull distribution and deep belief network[C]// 2016 International Symposium on Flexible Automation.Cleveland: IEEE, 2016.
[9]CHEN Z Y, LI W H.Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J].IEEE Transactions on Instrumentation & Measurement, 2017,66(7): 1693-1702.
[10]QIU J W, LIANG W, ZHANG L B, et al.The early-warning model of equipment chain in gas pipeline based on DNN-HMM[J].Journal of Natural Gas Science and Engineering, 2015,27: 1710-1722.
[11]LI C, SNCHEZ R V, ZURITA G, et al.Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning[J].Sensors, 2016,16(6): 895.
[12]LI Y C, NIE X Q, HUANG R.Web spam classification method based on deep belief networks[J].Expert Systems with Applications, 2018,96(96): 261-270.
[13]DONG Y, LI D.Deep learning and its applications to signal and information processing[J].IEEE Signal Processing Magazine, 2011,28(1): 145-154.
[14]TRAN V T, ALTHOBIANI F, BALL A.An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks[J].Expert Systems with Applications, 2014,41(9): 4113-4122.
[15]CHOPRA S, HADSELL R, LECUN Y.Learning a similarity metric discriminatively, with application to face verification[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego: IEEE, 2005.
[16]周水庚,周傲英,曹晶.基于数据分区的DBSCAN算法[J].计算机研究与发展, 2000,37(10): 1153-1159.
ZHOU Shuigeng, ZHOU Aoying, CAO Jing.A data-partitioning-based DBSCAN algorithm[J].Journal of Computer Research and Development, 2000,37(10): 1153-1159.
[17]LI B, ZHANG P L, LIU D S, et al.Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization[J].Journal of Sound and Vibration, 2010,330(10): 2388-2399.
[18]STOCKWELL R G, MANSINHA L, LOWE R P.Localization of the complex spectrum: the S transform[J].IEEE Transactions on Signal Processing, 2002,44(4): 998-1001.
[19]FRIEDMAN N, GEIGER D, GOLDSZMIDT M.Bayesian network classifiers[J].Machine Learning, 1997,9(2/3): 131-163.

PDF(2014 KB)

Accesses

Citation

Detail

段落导航
相关文章

/