[1]HOANG D T, KANG H J.Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J].Cognitive Systems Research, 2018,53(3): 42-50.
[2]WEN L, LI X, GAO L, et al.A new convolutional neural network based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics, 2017,65(7): 5990-5998.
[3]LU C, WANG Z Y, ZHOU B.Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J].Advanced Engineering Informatics, 2017,32: 139-151.
[4]陶洁, 刘义伦, 杨大炼,等.基于细菌觅食决策和深度置信网络的滚动轴承故障诊断[J].振动与冲击, 2017,36(23): 68-74.
TAO Jie, LIU Yilun, YANG Dalian, et al.Rolling bearing fault diagnosis based on bacterial foraging algorithm and deep belief network[J].Journal of Vibration and Shock, 2017,36(23): 68-74.
[5]SHAO H D, JIANG H K, ZHANG X, et al.Rolling bearing fault diagnosis using an optimization deep belief network[J].Measurement Science and Technology, 2015,26(11): 115002.
[6]TAMILSELVAN P, WANG P F.Failure diagnosis using deep belief learning based health state classification[J].Reliability Engineering and System Safety, 2013,115(7): 124-135.
[7]YANG D L, LIU Y L, LI S B, et al.Fatigue crack growth prediction of 7075 aluminum alloy based on the GMSVR model optimized by the artificial bee colony algorithm[J].Engineering Computations, 2017,34(4): 1034-1053.
[8]MA M, CHEN X F, WANG S B, et al.Bearing degradation assessment based on weibull distribution and deep belief network[C]// 2016 International Symposium on Flexible Automation.Cleveland: IEEE, 2016.
[9]CHEN Z Y, LI W H.Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J].IEEE Transactions on Instrumentation & Measurement, 2017,66(7): 1693-1702.
[10]QIU J W, LIANG W, ZHANG L B, et al.The early-warning model of equipment chain in gas pipeline based on DNN-HMM[J].Journal of Natural Gas Science and Engineering, 2015,27: 1710-1722.
[11]LI C, SNCHEZ R V, ZURITA G, et al.Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning[J].Sensors, 2016,16(6): 895.
[12]LI Y C, NIE X Q, HUANG R.Web spam classification method based on deep belief networks[J].Expert Systems with Applications, 2018,96(96): 261-270.
[13]DONG Y, LI D.Deep learning and its applications to signal and information processing[J].IEEE Signal Processing Magazine, 2011,28(1): 145-154.
[14]TRAN V T, ALTHOBIANI F, BALL A.An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks[J].Expert Systems with Applications, 2014,41(9): 4113-4122.
[15]CHOPRA S, HADSELL R, LECUN Y.Learning a similarity metric discriminatively, with application to face verification[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego: IEEE, 2005.
[16]周水庚,周傲英,曹晶.基于数据分区的DBSCAN算法[J].计算机研究与发展, 2000,37(10): 1153-1159.
ZHOU Shuigeng, ZHOU Aoying, CAO Jing.A data-partitioning-based DBSCAN algorithm[J].Journal of Computer Research and Development, 2000,37(10): 1153-1159.
[17]LI B, ZHANG P L, LIU D S, et al.Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization[J].Journal of Sound and Vibration, 2010,330(10): 2388-2399.
[18]STOCKWELL R G, MANSINHA L, LOWE R P.Localization of the complex spectrum: the S transform[J].IEEE Transactions on Signal Processing, 2002,44(4): 998-1001.
[19]FRIEDMAN N, GEIGER D, GOLDSZMIDT M.Bayesian network classifiers[J].Machine Learning, 1997,9(2/3): 131-163.