SMA-负刚度双曲面隔震装置的减震性能研究

杨大余1,常化慧2,曹飒飒2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 123-132.

PDF(2244 KB)
PDF(2244 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 123-132.
论文

SMA-负刚度双曲面隔震装置的减震性能研究

  • 杨大余1,常化慧2,曹飒飒2
作者信息 +

Aseismic performance of SMA-based negative stiffness isolation bearings

  • YANG Dayu1,CHANG Huahui2,CAO Sasa2
Author information +
文章历史 +

摘要

虽然SMA减隔震支座可以提高桥梁的自复位能力,但与普通减隔震支座相比,会增大下部结构的内力响应。为解决这一问题,拟提出一种新型SMA负刚度双曲面隔震装置。该装置由SMA索提供恢复力,由两个曲面反向的摩擦摆支座提供负刚度,由滑块和上、下钢板间的摩擦提供耗能能力。理论推导及有限元分析结果表明,该减震装置既可为桥梁提供自复位能力,又可在减小桥梁位移响应的前提下,部分减小SMA隔震桥梁结构体系的内力响应。

Abstract

Compared with traditional isolation bearings, superelastic shape memory alloy (SMA)-based isolation bearings can improve the re-centering capability of bridges, but they result in higher forces in the substructures.A novel SMA-based negative stiffness isolation bearing was proposed to reduce the forces.It was composed of SMA-cable, providing the re-centering capability, and a friction pendulum bearing with inverted surfaces, providing negative stiffness to reduce the transmitted forces.The theoretical and finite element analyses of the bearing were conducted.It turns out that the novel isolation bearing can not only provide re-centering capability, but also reduce the internal force response of bridges when they are subjected to earthquakes.

关键词

桥梁 / 隔震装置 / 负刚度 / 反双曲面 / 形状记忆合金

Key words

bridge / isolation bearing / negative stiffness / double inverted surfaces / superelastic shape memory alloy

引用本文

导出引用
杨大余1,常化慧2,曹飒飒2. SMA-负刚度双曲面隔震装置的减震性能研究[J]. 振动与冲击, 2021, 40(10): 123-132
YANG Dayu1,CHANG Huahui2,CAO Sasa2. Aseismic performance of SMA-based negative stiffness isolation bearings[J]. Journal of Vibration and Shock, 2021, 40(10): 123-132

参考文献

[1]LI J, PENG T, YAN X.Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations[J].Earthquake Engineering and Engineering Vibration, 2008,7(4): 337-344.
[2]921大地震勘灾调查小组.921集集大地震桥梁震害调查报告[R].台湾: 国家地震工程研究中心, 1999.
[3]ANDRAWES B, DESROCHES R.Comparison between shape memory alloy seismic restrainers and other bridge retrofit devices[J].Journal of Bridge Engineering, 2007,12(6): 700-709.
[4]DESROCHES R, PFEIFER T, LEON R T, et al.Full-scale tests of seismic cable restrainer retrofits for simply supported bridges[J].Journal of Bridge Engineering, 2003,8(4): 191-198.
[5]WANG J Q, LI S, DEZFULI F H, et al.Sensitivity analysis and multi-criteria optimization of SMA cable restrainers for longitudinal seismic protection of isolated simply supported highway bridges[J].Engineering Structures, 2019,189: 509-522.
[6]SHINOZUKA M, CHAUDHURI S R, MISHRA S K.Shape-memory-alloy supplemented lead rubber bearing (SMA-LRB) for seismic isolation[J].Probabilistic Engineering Mechanics, 2015,41(1): 34-45.
[7]CHOI E, NAM T H, OH J T, et al.An isolation bearing for highway bridges using shape memory alloys[J].Materials Science & Engineering A, 2006,438(1): 1081-1084.
[8]LIANG D, ZHENG Y, FANG C, et al.Shape memory alloy (SMA)-cable-controlled sliding bearings: development, testing, and system behavior[J].Smart Materials and Structures, 2020,29(8): 085006.
[9]WANG B, ZHU S, CASCIATI F.Experimental study of novel self-centering seismic base isolators incorporating superelastic shape memory alloys[J].Journal of Structural Engineering, 2020,146(7): 1-16.
[10]曹飒飒, 伍隋文, 王欢.梁桥多级设防SMA减震装置[J].振动与冲击, 2019,38(24): 209-217.
CAO Sasa, WU Suiwen, WANG Huan.Multi-level performance SMA-based isolation system in girder bridges[J].Journal of Vibration and Shock, 2019,38(24): 209-217.
[11]HAN Q, LIANG X, WEN J N, et al.Multiple-variable frequency pendulum isolator with high-performance materials[J].Smart Materials and Structures, 2020,29(7): 1-13.
[12]LIN P, ROSCHKE P, LOH C, et al.Semi-active controlled base-isolation system with magnetorheological damper and pendulum system[C]//Proceedings of the 13th World Conference on Earthquake Engineering.Vancouver: WCEE, 2004.
[13]CONNOR J J, WADA A, IWATA M, et al.Damage-controlled structures.I: preliminary design methodology for seismically active regions[J].Journal of Structural Engineering, 1997,123(4): 423-431.
[14]BANI-HANI K A, SHEBAN M A.Semi-active neuro-control for base-isolation system using magnetorheological (MR) dampers[J].Earthquake Engineering & Structural Dynamics, 2010,35(9): 1119-1144.
[15]LI H, LIU M, OU J.Negative stiffness characteristics of active and semi-active control systems for stay cables[J].Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2008,15(2): 120-142.
[16]IEMURA H, PRADONO M H.Simple algorithm for semi-active seismic response control of cable-stayed bridges[J].Earthquake Engineering & Structural Dynamics, 2005,34(4/5): 409-423.
[17]IEMURA H, PRADONO M H.Advances in the development of pseudo-negative-stiffness dampers for seismic response control[J].Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2009,16(7/8): 784-799.
[18]IEMURA H, IGARASHI A, PRADONO M H, et al.Negative stiffness friction damping for seismically isolated structures[J].Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2006,13(2/3): 775-791.
[19]ATTARY N, SYMANS M, NAGARAJAIAH S, et al.Numerical simulations of a highway bridge structure employing passive negative stiffness device for seismic protection[J].Earthquake Engineering & Structural Dynamics, 2015,44(6): 973-995.
[20]ATTARY N, SYMANS M, NAGARAJAIAH S, et al.Performance evaluation of negative stiffness devices for seismic response control of bridge structures via experimental shake table tests[J].Journal of Earthquake Engineering, 2015,19(2): 249-276.
[21]熊世树, 纪晗, 阮建军, 等.负刚度混合隔震系统隔震效果试验研究[J].振动与冲击, 2011,30(增刊1): 159-163.
XIONG Shishu, JI Han, RUAN Jianjun, et al.Experimental study of isolation effect on hybrid isolation system with negative stiffness[J].Journal of Vibration and Shock, 2011,30(Sup 1): 159-163.
[22]SUN T, LAI Z, NAGARAJAIAH S, et al.Negative stiffness device for seismic protection of smart base isolated benchmark building[J].Structural Control and Health Monitoring, 2017,24(11): 1968.
[23]杨巧荣, 冉茂来, 何文福, 等.隔震结构基于阻尼负刚度装置的地震响应研究[J].振动工程学报, 2018,31(6): 920-929.
YANG Qiaorong, RAN Maolai, HE Wenfu, et al.Study on seismic response of isolated structure based on damping negative stiffness device[J].Journal of Vibration Engineering, 2018,31(6): 920-929.
[24]LIU M, ZHOU P, LI H.Novel self-centering negative stiffness damper based on combination of shape memory alloy and prepressed springs[J].Journal of Aerospace Engineering, 2018,31(6): 04018100.
[25]OZBULUT O E, DAGHASH S, SHERIF M M.Shape memory alloy cables for structural applications[J].Journal of Materials in Civil Engineering, 2016,28(4): 1-10.
[26]AURICCHIO F, TAYLOR R L.Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior[J].Computer Methods in Applied Mechanics and Engineering, 1997,143(1/2): 175-194.
[27]CAO S, OZBULUT O E, WU S, et al.Multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges[J].Smart Materials and Structures, 2020,29(5): 1-18.
[28]任文杰, 李宏男, 宋钢兵.基于形状记忆合金的X形板阻尼器的力学模型[J].振动与冲击, 2006,25(4): 53-57.
REN Wenjie, LI Hongnan, SONG Gangbing.Mechanical model of X type SMA plate damper[J].Journal of Vibration and Shock, 2006,25(4): 53-57.
[29]Seismosoft.Seismomatch v2.1: a computer program for spectrum matching of earthquake records[Z].2013.

PDF(2244 KB)

Accesses

Citation

Detail

段落导航
相关文章

/