基于自适应紧框架学习的轴承故障诊断

柏壮壮,卢一相,高清维,孙冬

振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 296-303.

PDF(1312 KB)
PDF(1312 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 296-303.
论文

基于自适应紧框架学习的轴承故障诊断

  • 柏壮壮,卢一相,高清维,孙冬
作者信息 +

Bearing fault diagnosis based on adaptive tight frame learning

  • BAI Zhuangzhuang, LU Yixiang, GAO Qingwei, SUN Dong
Author information +
文章历史 +

摘要

轴承是工业生产设备中最关键的零部件之一,其运行状态直接影响到整个机器或系统的运行。针对传统多尺度变换特征无法自适应解决故障诊断问题,提出一种基于自适应紧框架学习的故障诊断方法。针对过完备字典各原子具有明显的相关性,影响故障信号的重建效果,在含噪条件下通过学习构造紧框架,它既可以对轴承故障信号进行有效的自适应描述,又能完全重构故障特征信号。各故障模态有着不同的特征频率,在紧框架下,根据故障特征频率在不同滤波器下具有不同的频率响应构造故障特征;利用基于遗传算法优化的支持向量机(SVM)进行分类训练与测试。实验表明,提出的算法对轴承的故障分类有很好的效果,而且可以针对不同的故障有很好的诊断能力

Abstract

A bearing fault diagnosis method based on adaptive compact frame learning was proposed to solve the problem that by the method of traditional multi-scale transformation, it is difficult to do the diagnosis adaptively.In view of the obvious correlation between the atoms of an over-complete dictionary, which affects the reconstruction effect of the fault signal, a compact framework in the condition of noise was constructed by learning.The method, could not only effectively describe the bearing fault signal adaptively, but also completely reconstruct the fault characteristic signal.Considering each fault mode having different characteristic frequencies, by making use of the tight frame, different frequency responses were generated by different filters, and according to the fault characteristic frequencies,fault features were constructed.A support vector machine(SVM) based on genetic algorithm optimization was used for classification training and testing.The experimental results show that the proposed algorithm is effective in fault classification of bearings and has good diagnostic capability for different faults.

关键词

故障诊断 / 紧框架 / 遗传算法 / 支持向量机(SVM)

Key words

fault diagnosis / tight framework / genetic algorithm / support vector machine(SVM)

引用本文

导出引用
柏壮壮,卢一相,高清维,孙冬. 基于自适应紧框架学习的轴承故障诊断[J]. 振动与冲击, 2021, 40(10): 296-303
BAI Zhuangzhuang, LU Yixiang, GAO Qingwei, SUN Dong. Bearing fault diagnosis based on adaptive tight frame learning[J]. Journal of Vibration and Shock, 2021, 40(10): 296-303

参考文献

[1]MCINERNY S A, DAI Y.Basic vibration signal processing for bearing fault detection[J].IEEE Transactions on Education, 2003, 46(1): 149-156.
[2]ZHU D, GAO Q, SUN D, et al.A detection method for bearing faults using null space pursuit and S transform[J].Signal Processing, 2014, 96(5): 80-89.
[3]SARUHAN H, SARIDEMIR S, QICEK A, et al.Vibration analysis of rolling element bearings defects[J].Journal of Applied Research and Technology,2014,12(3):384-395.
[4]KONAR P, CHATTOPADHYAY P.Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)[J].Applied Soft Computing, 2011, 11(6):4203-4211.
[5]ZAREI J.Induction motors bearing fault detection using pattern recognition techniques[J].Expert Systems with Applications, 2012, 39(1): 68-73.
[6]YANG Y, YU D J, CHENG J S.A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J].Journal of Sound and Vibration, 2006, 294(1/2): 269-277.
[7]WANG Z, ZHANG Q, XIONG J, et al.Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J].IEEE Sensors Journal, 2017, 17(17):5581-5588.
[8]WIDODO A,YANG B S.Support vector machine in machine condition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing, 2007, 21(6):2560-2574.
[9]郑红, 周雷, 杨浩.基于谱峭度与双谱的轴承故障诊断方法[J].北京航空航天大学学报, 2014, 40(9):1176-1182.
ZHENG Hong, ZHOU Lei,YANG Hao.Rolling element bearing fault diagnosis based on spectral kurtosis and bi-spectrum[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1176-1182.
[10]WANG Y, MARKERT R.Filter bank property of variational mode decomposition and its applications[J].Signal Processing, 2016, 120: 509-521.
[11]王新, 闫文源.基于变分模态分解和SVM的滚动轴承故障诊断[J].振动与冲击, 2017, 36(18): 252-256.
WANG Xin, YAN Wenyuan.Fault diagnois of roller bearings based on variational mode decomposition and SVM[J].Journal of Vibration and Shock, 2017, 36(18):252-256.
[12]GILLES J.Empirical wavelet transform[J].IEEE Transactions on Signal Processing,2013,61(16):3999-4010.
[13]HU Y, LI F, LI H, et al.An enhanced empirical wavelet transform for noisy and non-stationary signal processing[J].Digital Signal Processing, 2017, 60: 220-229.
[14]张锐戈, 谭永红.基于最优Morlet小波和隐马尔可夫模型的轴承故障诊断[J].振动与冲击, 2012, 31(12):5-8.
ZHANG Ruige, TAN Yonghong.Fault diagnosis of rolling element bearings based on optimal morlet wavelet and hidden markov model[J].Journal of Vibration and Shock, 2012, 31(12): 5-8.
[15]WENG P Y, LIU M K.Roller bearing fault diagnosis based on wavelet packet decomposition and support vector machine[C]∥2017 International Conference on Applied System Innovation.Sapporo: IEEE, 2017.
[16]VISHWAKARMA H O, SAJAN K S, MAHESHWARI B, et al.Intelligent bearing fault monitoring system using support vector machine and wavelet packet decomposition for induction motors[C]∥2015 International Conference on Power and Advanced Control Engineering.Bangalore: IEEE, 2015.
[17]RAJESWARI C, SATHIYABHAMA B, DEVENDIRAN S, et al.Bearing fault diagnosis using wavelet packet transform, hybrid PSO and support vector machine[J].Procedia Engineering, 2014, 97: 1772-1783.
[18]HE Q.Vibration signal classification by wavelet packet energy flow manifold learning[J].Journal of Sound and Vibration, 2013, 332(7): 1881-1894.
[19]HAN L, WEILI C.Research on fault diagnosis of rolling bearing based on wavelet packet energy feature and planar cloud model[C]∥2015 12th IEEE International Conference on Electronic Measurement & Instruments.Qingdao: IEEE, 2015.
[20]郑红, 周雷, 杨浩.基于小波包分析与多核学习的滚动轴承故障诊断[J].航空动力学报, 2015, 30(12):3035-3042.
ZHENG Hong, ZHOU Lei, YANG Hao.Rolling bearing fault diagnosis based on wavelet packet analysis and multi kernel learning[J].Journal of Aerospace Power, 2015,30(12): 3035-3042.
[21]DENG S, JING B, SHENG S, et al.Impulse feature extraction method for machinery fault detection using fusion sparse coding and online dictionary learning[J].Chinese Journal of Aeronautics, 2015, 28(2): 488-498.
[22]孙大洪, 王发展, 刘强, 等.基于BP和RBF神经网络的滚动轴承故障诊断比较[J].轴承, 2010(2): 53-56.
SUN Dahong, WANG Fazhan, LIU Qiang, et al.Comparative study on fault diagnosis of rolling bearings based on BP and RBF neural network[J].Bearing,2010(2):53-56.
[23]LU W N, WANG X Q, YANG C C, et al.A novel feature extraction method using deep neural network for rolling bearing fault diagnosis[C]∥The 27th Chinese Control and Decision Conference.Qingdao: IEEE, 2015.
[24]VAPNIK V.The nature of statistical learning theory[M].New York: Springer Science & Business Media, 2013.
[25]骆志高, 李举, 王祥,等.基于遗传算法的滚动轴承复合故障诊断研究[J].振动与冲击, 2010,29(6):174-177.
LUO Zhigao, LI Ju, WANG Xiang,et al.The research of rolling bearing complex fault diagnosis based on genetic algorithms[J].Journal of Vibration and Shock, 2010, 29(6): 174-177.
[26]CAI J F, JI H, SHEN Z, et al.Data-driven tight frame construction and image denoising[J].Applied and Computational Harmonic Analysis, 2014, 37(1): 89-105.

PDF(1312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/