[1]MCINERNY S A, DAI Y.Basic vibration signal processing for bearing fault detection[J].IEEE Transactions on Education, 2003, 46(1): 149-156.
[2]ZHU D, GAO Q, SUN D, et al.A detection method for bearing faults using null space pursuit and S transform[J].Signal Processing, 2014, 96(5): 80-89.
[3]SARUHAN H, SARIDEMIR S, QICEK A, et al.Vibration analysis of rolling element bearings defects[J].Journal of Applied Research and Technology,2014,12(3):384-395.
[4]KONAR P, CHATTOPADHYAY P.Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)[J].Applied Soft Computing, 2011, 11(6):4203-4211.
[5]ZAREI J.Induction motors bearing fault detection using pattern recognition techniques[J].Expert Systems with Applications, 2012, 39(1): 68-73.
[6]YANG Y, YU D J, CHENG J S.A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J].Journal of Sound and Vibration, 2006, 294(1/2): 269-277.
[7]WANG Z, ZHANG Q, XIONG J, et al.Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J].IEEE Sensors Journal, 2017, 17(17):5581-5588.
[8]WIDODO A,YANG B S.Support vector machine in machine condition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing, 2007, 21(6):2560-2574.
[9]郑红, 周雷, 杨浩.基于谱峭度与双谱的轴承故障诊断方法[J].北京航空航天大学学报, 2014, 40(9):1176-1182.
ZHENG Hong, ZHOU Lei,YANG Hao.Rolling element bearing fault diagnosis based on spectral kurtosis and bi-spectrum[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1176-1182.
[10]WANG Y, MARKERT R.Filter bank property of variational mode decomposition and its applications[J].Signal Processing, 2016, 120: 509-521.
[11]王新, 闫文源.基于变分模态分解和SVM的滚动轴承故障诊断[J].振动与冲击, 2017, 36(18): 252-256.
WANG Xin, YAN Wenyuan.Fault diagnois of roller bearings based on variational mode decomposition and SVM[J].Journal of Vibration and Shock, 2017, 36(18):252-256.
[12]GILLES J.Empirical wavelet transform[J].IEEE Transactions on Signal Processing,2013,61(16):3999-4010.
[13]HU Y, LI F, LI H, et al.An enhanced empirical wavelet transform for noisy and non-stationary signal processing[J].Digital Signal Processing, 2017, 60: 220-229.
[14]张锐戈, 谭永红.基于最优Morlet小波和隐马尔可夫模型的轴承故障诊断[J].振动与冲击, 2012, 31(12):5-8.
ZHANG Ruige, TAN Yonghong.Fault diagnosis of rolling element bearings based on optimal morlet wavelet and hidden markov model[J].Journal of Vibration and Shock, 2012, 31(12): 5-8.
[15]WENG P Y, LIU M K.Roller bearing fault diagnosis based on wavelet packet decomposition and support vector machine[C]∥2017 International Conference on Applied System Innovation.Sapporo: IEEE, 2017.
[16]VISHWAKARMA H O, SAJAN K S, MAHESHWARI B, et al.Intelligent bearing fault monitoring system using support vector machine and wavelet packet decomposition for induction motors[C]∥2015 International Conference on Power and Advanced Control Engineering.Bangalore: IEEE, 2015.
[17]RAJESWARI C, SATHIYABHAMA B, DEVENDIRAN S, et al.Bearing fault diagnosis using wavelet packet transform, hybrid PSO and support vector machine[J].Procedia Engineering, 2014, 97: 1772-1783.
[18]HE Q.Vibration signal classification by wavelet packet energy flow manifold learning[J].Journal of Sound and Vibration, 2013, 332(7): 1881-1894.
[19]HAN L, WEILI C.Research on fault diagnosis of rolling bearing based on wavelet packet energy feature and planar cloud model[C]∥2015 12th IEEE International Conference on Electronic Measurement & Instruments.Qingdao: IEEE, 2015.
[20]郑红, 周雷, 杨浩.基于小波包分析与多核学习的滚动轴承故障诊断[J].航空动力学报, 2015, 30(12):3035-3042.
ZHENG Hong, ZHOU Lei, YANG Hao.Rolling bearing fault diagnosis based on wavelet packet analysis and multi kernel learning[J].Journal of Aerospace Power, 2015,30(12): 3035-3042.
[21]DENG S, JING B, SHENG S, et al.Impulse feature extraction method for machinery fault detection using fusion sparse coding and online dictionary learning[J].Chinese Journal of Aeronautics, 2015, 28(2): 488-498.
[22]孙大洪, 王发展, 刘强, 等.基于BP和RBF神经网络的滚动轴承故障诊断比较[J].轴承, 2010(2): 53-56.
SUN Dahong, WANG Fazhan, LIU Qiang, et al.Comparative study on fault diagnosis of rolling bearings based on BP and RBF neural network[J].Bearing,2010(2):53-56.
[23]LU W N, WANG X Q, YANG C C, et al.A novel feature extraction method using deep neural network for rolling bearing fault diagnosis[C]∥The 27th Chinese Control and Decision Conference.Qingdao: IEEE, 2015.
[24]VAPNIK V.The nature of statistical learning theory[M].New York: Springer Science & Business Media, 2013.
[25]骆志高, 李举, 王祥,等.基于遗传算法的滚动轴承复合故障诊断研究[J].振动与冲击, 2010,29(6):174-177.
LUO Zhigao, LI Ju, WANG Xiang,et al.The research of rolling bearing complex fault diagnosis based on genetic algorithms[J].Journal of Vibration and Shock, 2010, 29(6): 174-177.
[26]CAI J F, JI H, SHEN Z, et al.Data-driven tight frame construction and image denoising[J].Applied and Computational Harmonic Analysis, 2014, 37(1): 89-105.