复杂曲面屋盖脉动风压的非高斯特性及峰值因子研究

杨雄伟,周强,李明水,王沛源

振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 315-322.

PDF(1918 KB)
PDF(1918 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 315-322.
论文

复杂曲面屋盖脉动风压的非高斯特性及峰值因子研究

  • 杨雄伟1,周强1,2,李明水1,2,王沛源1
作者信息 +

Non-Gaussian features and peak factors of fluctuating wind pressures on a complex curved roof

  • YANG Xiongwei1, ZHOU Qiang1,2, LI Mingshui1,2, WANG Peiyuan1
Author information +
文章历史 +

摘要

以某大跨复杂曲面屋盖为研究对象,通过刚体模型风洞测压试验,研究表面脉动风压的概率分布规律和非高斯特性,分析形成非高斯分布的流动机理,并分别基于脉动风压空间相关性、峰度和偏度的累积概率,提出了高斯分布和非高斯分布的划分标准;在此基础上,采用Hermite矩模型构建非高斯分布与峰值因子间的联系。结果表明:屋盖迎风侧边缘和曲面拐角的表面脉动风压概率分布相较于标准高斯出现严重的偏离和凸起,呈现显著的非高斯分布特性,其原因在于上述区域的流动分离明显,其风压分布受分离涡影响而呈现较强的空间相关性,不满足独立同分布条件;以脉动风压空间相关性作为划分高斯与非高斯区域的标准更加合理,且物理意义较为明确。此外,还给出了此类复杂曲面屋盖非高斯区域风荷载峰值因子的取值范围。

Abstract

The synchronized pressure tests on the rigid model of complex curved roof were conducted in wind tunnel in order to investigate the probability distribution and non-Gaussian features of fluctuating wind pressures, as well as their flow mechanism.Then the regions of Gaussian distribution and non-Gaussian distribution on the roof were divided by two criteria based on the cumulative probabilities of kurtosis and skewness and spatial correlation of wind pressures proposed for the first time, respectively.The relationship between non-Gaussian distribution and peak factor was expressed by the Hermite moment model, and thus the non-Gaussian peak factors were obtained.The results show that probability distributions of fluctuating pressures within the vicinity of the windward-side edge, which appear serious deviation and bulge compared with those of standard Gaussian distribution, present typical non-Gaussian characteristics.This is due to that the flow separation occurred in the above-mentioned region, wherefore the fluctuating pressure distribution was strongly spatially dependent on the separation vortices which does not satisfy the independent distribution; It is more reasonable to use the spatial correlation of fluctuating wind pressure as the standard to divide the Gaussian and non-Gaussian region, and it has clear physical significance.In addition, the range of wind load peak factor in non-Gaussian region of this kind of complex curved roof is given.

关键词

复杂曲面屋盖 / 非高斯特性 / 概率分布 / 相关系数 / 峰值因子

Key words

complex curved roof / non-Gaussian features / probability distribution / correlation coefficient / peak factor

引用本文

导出引用
杨雄伟,周强,李明水,王沛源. 复杂曲面屋盖脉动风压的非高斯特性及峰值因子研究[J]. 振动与冲击, 2021, 40(10): 315-322
YANG Xiongwei, ZHOU Qiang, LI Mingshui, WANG Peiyuan. Non-Gaussian features and peak factors of fluctuating wind pressures on a complex curved roof[J]. Journal of Vibration and Shock, 2021, 40(10): 315-322

参考文献

[1]HOLMES J D.Wind loading of structures[M].3rd ed.Boca Raton:CRC Press, 2001.
[2]TAMURA Y, CAO S Y.International group for wind-related disaster risk reduction (IG-WRDRR)[J].Journal of Wind Engineering & Industrial Aerodynamics, 2012, 104/105/106:3-11.
[3]叶继红, 孙虎跃.大跨屋盖表面局部体型系数和峰值风压研究[J].建筑结构学报, 2018, 39(10): 11-20.
YE Jihong, SUN Huyue.Local shape factors and peak wind pressure of large-span roofs[J].Journal of Building Structures, 2018, 39(10): 11-20.
[4]KAREEM A, ZHOU Y.Gust loading factor: past, present and future[J].Journal of Wind Engineering & Industrial Aerodynamics, 2003, 91(12): 1301-1328.
[5]李玉学, 白硕, 杨庆山, 等.大跨度封闭式柱面屋盖脉动风荷载非高斯分布试验研究[J].建筑结构学报, 2019, 40(7): 62-69.
LI Yuxue, BAI Shuo, YANG Qingshan, et al.Experiment study on non-Gaussian distribution of fluctuating wind load on long-span enclosed cylindrical shell roof[J].Journal of Building Structures, 2019, 40(7): 62-69.
[6]李波, 田玉基, 杨庆山.非高斯风压时程的矩模型变换与峰值因子计算公式[J].振动工程学报, 2016, 29(3): 395-402.
LI Bo, TIAN Yuji, YANG Qingshan.Moment-based transformation of non-Gaussian wind pressure histories and non-Gaussian peak factor formulae[J].Journal of Vibration Engineering, 2016, 29(3):395-402.
[7]林巍, 楼文娟, 申屠团兵, 等.高层建筑脉动风压的非高斯峰值因子方法[J].浙江大学学报(工学版), 2012, 46(4): 691-697.
LIN Wei, LOU Wenjuan, SHENTU Tuanbing, et al.Peak factor of non-Gaussian pressure process on complex super-tall building[J].Journal of Zhejiang University (Engineering Science), 2012, 46(4): 691-697.
[8]RICHARDS P J, HOXEY R P.Quasi-steady theory and point pressures on a cubic building[J].Journal of Wind Engineering & Industrial Aerodynamics, 2004, 92(14): 1173-1190.
[9]GIOFFR E M, GUSELLA V.Damage accumulation in glass plates[J].Journal of Engineering Mechanics, 2002, 128(7): 801-805.
[10]孙瑛, 武岳, 林志兴, 等.大跨屋盖结构风压脉动的非高斯特性[J].土木工程学报, 2007,40(4):1-5.
SUN Ying, WU Yue, LIN Zhixing, et al.Non-Gaussian features of fluctuating wind pressures on long span roofs[J].China Civil Engineering Journal, 2007,40(4):1-5.
[11]KUMAR K S, STATHOPOULOS T.Synthesis of non-Gaussian wind pressure time series on low building roofs[J].Engineering Structures, 1999, 21(12): 1086-1100.
[12]KUMAR K S, STATHOPOULOS T.Wind loads on low building roofs:a stochastic perspective[J].Journal of Structural Engineering, 2000, 126(8): 944-956.
[13]叶继红, 侯信真.大跨屋盖脉动风压的非高斯特性研究[J].振动与冲击, 2010, 29(7): 9-15.
YE Jihong, HOU Xinzhen.Non-Gaussian features of fluctuating wind pressures on long span roofs[J].Journal of Vibration and Shock, 2010, 29(7): 9-15.
[14]KAREEM A, ZHAO J.Analysis of non-Gaussian surge response of tension leg platforms under wind loads[J].Journal of Offshore Mechanics and Arctic Engineering, 1994, 116(3): 137-144.
[15]TOGNARELLI M A, ZHAO J, KAREEM A.Equivalent statistical cubicization for system and forcing nonlinearities[J].Journal of Engineering Mechanics, 1997, 123(8): 890-893.
[16]WINTERSTEIN, STEVEN R.Non-normal responses and fatigue damage[J].Journal of Engineering Mechanics, 1985, 111(10): 1291-1295.
[17]DING J, CHEN X Z.Moment-based translation model for hardening non-Gaussian response processes[J].Journal of Engineering Mechanics, 2016, 142(2):06015006.
[18]YANG Q S, TIAN Y J.A model of probability density function of non-Gaussian wind pressure with multiple samples[J].Journal of Wind Engineering and Industrial Aerodynamics, 2015,140: 67-78.
[19]HOLMES J D, COCHRAN L S.Probability distributions of extreme pressure coefficients[J].Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(7): 893-901.
[20]QUAN Y, WANG F, GU M.A method for estimation of extreme values of wind pressure on buildings based on the generalized extreme-value theory[J].Mathematical Problems in Engineering, 2014(6):1-22.
[21]建筑结构荷载规范:GB 50009—2012[S].北京: 中国建筑工业出版社, 2012.
[22]HUANG G, LIU W, ZHOU Q, et al.Numerical study for downburst wind and its load on high-rise building[J].Wind and Structures, 2018, 27(2):89-100.
[23]GIOFFRE M, GUSELLA V, GRIGORIU M.Non-Gaussian wind pressure on prismatic buildings.II: numerical simulation[J].Journal of Structural Engineering, 2001, 127(9): 990-995.
[24]柯世堂, 王浩.基于大涡模拟直筒-锥段型钢结构冷却塔风压非高斯特性研究[J].建筑结构学报, 2018, 39(2): 114-121.
KE Shitang, WANG Hao.Non-Gaussian wind pressure of cylindrical-cone steel cooling tower based on large eddy simulation[J].Journal of Building Structures, 2018, 39(2): 114-121.

PDF(1918 KB)

Accesses

Citation

Detail

段落导航
相关文章

/