[1]姚家伦,李龙森.机床齿轮箱智能振动故障诊断专家系统[J].振动与冲击, 1988,7(3): 73-78.
YAO Jialun, LI Longsen.Intelligent vibration fault diagnosis expert system for machine tool gearbox[J].Journal of Vibration and Shock, 1988,7(3): 73-78.
[2]夏松波, 张嘉钟, 徐世昌, 等.旋转机械故障诊断技术的现状与展望[J].振动与冲击, 1997,16(2): 5-9.
XIA Songbo, ZHANG Jiazhong, XU Shichang, et al.Present situation and prospect of fault diagnosis technology for rotating machinery[J].Journal of Vibration and Shock, 1997,16(2): 5-9.
[3]王青华, 杨天海, 沈润杰, 等.抽水蓄能机组振动故障诊断专家系统[J].振动与冲击, 2012,31(7): 158-161.
WANG Qinghua,YANG Tianhai, SHEN Runjie, et al.Fault caused by vibration diagnosis expert system for a pump storage group[J].Journal of Vibration and Shock, 2012,31(7): 158-161.
[4]刘星辰, 周奇才, 赵炯, 等.一维卷积神经网络实时抗噪故障诊断算法[J].哈尔滨工业大学学报, 2019,51(7): 89-95.
LIU Xingchen, ZHOU Qicai, ZHAO Jiong, et al.Real-time and anti-noise fault diagnosis algorithm based on 1D convolutional neural network[J].Journal of Harbin Institute of Technology, 2019,51(7): 89-95.
[5]ZHANG W, PENG G L, LI C H.Bearings fault diagnosis based on convolutional neural networks with 2D representation of vibration signals as input[C]//MATEC Web of Conferences.Shanghai: MATEC, 2017.
[6]LONG W, LI X Y, LIANG G, et al.A new convolutional neural network-based data-driven fault diagnosis method[J].IEEE Transactions on Industrial Electronics, 2018,65(7): 5990-5998.
[7]李恒, 张氢, 秦仙蓉, 等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击, 2018,37(19): 132-139.
LI Heng, ZHANG Qing, QIN Xianrong, et al.Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J].Journal of Vibration and Shock, 2018,37(19): 132-139.
[8]王丽华, 谢阳阳, 周子贤, 等.基于卷积神经网络的异步电机故障诊断[J].振动、测试与诊断, 2017,37(6): 1208-1215.
WANG Lihua, XIE Yangyang, ZHOU Zixian, et al.Fault diagnosis of asynchronous motor based on convolutional neural network[J].Journal of Vibration, Measurement & Diagnosis, 2017,37(6): 1208-1215.
[9]曾雪琼.基于卷积神经网络的变速器故障分类识别研究[D].广州:华南理工大学, 2016.
[10]SUN W, YAO B, ZENG N Y, et al.An intelligent gear fault diagnosis methodology using a complex wavelet enhanced convolutional neural network[J].Materials, 2017,10(7): 790.
[11]JIA F, LEI Y G, LU N, et al.Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J].Mechanical Systems and Signal Processing, 2018,110: 349-367.
[12]胡晓依, 荆云建, 宋志坤, 等.基于CNN-SVM的深度卷积神经网络轴承故障识别研究[J].振动与冲击, 2019,38(18): 173-178.
HU Xiaoyi, JING Yunjian, SONG Zhikun, et al.Bearing fault identification by using deep convolution neural networks based on CNN-SVM[J].Journal of Vibration and Shock, 2019,38(18): 173-178.
[13]马慧.基于状态的滚动轴承寿命预测与维修计划优化研究[D].北京:北京交通大学, 2017.
[14]雷亚国, 何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报, 2008,44(7): 112-117.
LEI Yaguo, HE Zhengjia, ZI Yanyang.Fault diagnosis based on novel hybrid intelligent model[J].Journal of Mechanical Engineering, 2008,44(7): 112-117.
[15]王鑫.基于小波变换的机械轴承磨损故障特征提取方法研究[D].成都:西南交通大学, 2016.
[16]HU X, HE Z J, ZHANG Z S, et al.Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble[J].Mechanical Systems & Signal Processing, 2007,21(2): 688-705.
[17]LEI Y G, HE Z J, ZI Y Y, et al.New clustering algorithm-based fault diagnosis using compensation distance evaluation technique[J].Mechanical Systems & Signal Processing, 2008,22(2): 419-435.
[18]王宏超, 陈进,董广明.基于补偿距离评估-小波核PCA的滚动轴承故障诊断[J].振动与冲击, 2013,32(18): 87-90.
WANG Hongchao, CHEN Jin, DONG Guangming.Fault diagnosis of rolling bearing based on compensation distance evaluation technique-wavelet kernel principal component analysis[J].Journal of Vibration and Shock, 2013,32(18): 87-90.
[19]陈雯柏.人工神经网络原理与实践[M].西安: 西安电子科技大学出版社,2015.
[20]SCHLKOPF B, PLATT J, HOFMANN T.Greedy layer-wise training of deep networks[J].Advances in Neural Information Processing Systems, 2007,19: 153-160.
[21]吴春志, 江鹏程, 冯辅周, 等.基于一维卷积神经网络的齿轮箱故障诊断[J].振动与冲击, 2018,37(22): 51-56.
WU Chunzhi, JIANG Pengcheng, FENG Fuzhou, et al.Faults diagnosis method for gearboxes based on a 1D convolutional neural network[J].Journal of Vibration and Shock, 2018,37(22): 51-56.
[22]林克正, 白婧轩, 李昊天, 等.深度学习下融合不同模型的小样本表情识别[J].计算机科学与探索, 2020,14(3): 482-492.
LIN Kezheng, BAI Jingxuan, LI Haotian, et al.Facial expression recognition with small samples fused with different models under deep learning[J].Journal of Frontiers of Computer Science and Technology, 2020,14(3): 482-492.