分布式流体脉动压力激励下泵喷推进器的结构辐射噪声分析

黄修长1,2,师帅康1,2,苏智伟1,2,饶志强1,3,华宏星1,2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 89-94.

PDF(1781 KB)
PDF(1781 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (10) : 89-94.
论文

分布式流体脉动压力激励下泵喷推进器的结构辐射噪声分析

  • 黄修长1,2,师帅康1,2,苏智伟1,2,饶志强1,3,华宏星1,2
作者信息 +

Vibro-acoustic responses of a pump-jet under distributed unsteady hydrodynamic forces

  • HUANG Xiuchang1,2,SHI Shuaikang1,2,SU Zhiwei1,2,RAO Zhiqiang1,3,HUA Hongxing1,2
Author information +
文章历史 +

摘要

流体激励载荷的分布式特性对泵喷推进器的结构声辐射具有重要影响。采用计算流体动力学数值模拟结合自编径向基函数插值获得了推进器结构表面的分布式流体激励脉动压力,利用耦合有限元方法研究了泵喷推进器在其全部表面分布式激励、仅转子表面分布式激励、每个叶片0.7R处等效三向激励和桨毂处等效三向激励作用下的结构辐射噪声。结果表明:径向基函数插值能够精确地将流体载荷映射到结构网格上;与泵喷全部表面分布式激励下的推进器表面均方振速和辐射声功率、传递至桨毂的传递力相比,转子表面分布式激励的贡献远大于导管和定子表面脉动压力的贡献;每个叶片0.7R处等效三向激励作用下的响应在量级上有差别;转子桨毂处等效三向激励作用下的响应在特征和量级上均相差较大。

Abstract

The vibro-acoustic responses of a pump-jet is greatly influenced by the characteristics of distributed unsteady hydrodynamic forces.Aiming at solving vibro-acoustic responses of the pump-jet under hydrodynamic pressure, the pulsation pressure was calculated by employing computational fluid dynamics (CFD), then a mapping method based on the radial basis function (RBF) was established between CFD mesh and structural mesh to obtain the distributed pulsation pressure on structural wet surface, and then the vibro-acoustic responses were calculated by using coupled FEM.Four load cases were studied: the distributed pulsation pressure applied on pump-jet wet surface, the distributed pulsation pressure applied on propeller wet surface, the equivalent pulsation force applied at 0.7R of the middle line of propeller on both pressure and suction faces of each propeller blade, and the equivalent pulsation force applied at the hub of the propeller.It is shown that the mapping method will yield a distributed pulsation force on structural wet surface with accuracy.Compared with the mean-square velocity, radiated power of the pump-jet and the transmitted force to the hub under the distributed pulsation pressure on pump-jet wet surface, the vibro-acoustic responses produced by the distributed pulsation pressure on propeller wet surface are the most significant contributor; the vibro-acoustic responses produced by the equivalent force at 0.7R of each propeller blade share almost the same peaks but with different magnitudes;however, the equivalent force applied at the hub will not excite so many modes and the magnitudes are much smaller.

关键词

泵喷 / 流体激励力 / 结构模态 / 结构振动声辐射

Key words

pump-jet / hydrodynamic force / structural modes / vibro-acoustic response

引用本文

导出引用
黄修长1,2,师帅康1,2,苏智伟1,2,饶志强1,3,华宏星1,2. 分布式流体脉动压力激励下泵喷推进器的结构辐射噪声分析[J]. 振动与冲击, 2021, 40(10): 89-94
HUANG Xiuchang1,2,SHI Shuaikang1,2,SU Zhiwei1,2,RAO Zhiqiang1,3,HUA Hongxing1,2. Vibro-acoustic responses of a pump-jet under distributed unsteady hydrodynamic forces[J]. Journal of Vibration and Shock, 2021, 40(10): 89-94

参考文献

[1]MERZ S, KESSISSOGLOU N, KINNS R, et al.Passive and active control of the radiated sound power from a submarine excited by propeller forces[J].Journal of Ship Research, 2013,57(1): 59-71.
[2]ZHANG G B, ZHAO Y, LI T Y, et al.Propeller excitation of longitudinal vibration characteristics of marine propulsion shafting system[J].Shock and Vibration, 2014(1): 1-19.
[3]谢基榕,沈顺根,吴有生.推进器激励的艇体辐射噪声及控制技术研究现状[J].中国造船, 2010,51(4): 234-241.
XIE Jirong, SHEN Shungen, WU Yousheng.Research status on noise radiation from vibrating hull induced by propeller and reduction measures[J].Shipbuilding of China, 2010,51(4): 234-241.
[4]饶志强.泵喷推进器水动力性能数值模拟[D].上海:上海交通大学, 2012.
[5]MA C, QIAN Z F, CHEN K, et al.Using vortex lattice and surface panel method to predict the unsteady hydrodynamic performance of podded propulsors[J].Journal of Ship Mechanics, 2014,18(9): 1035-1043.
[6]SNCHEZ-CAJA A, MARTIO J, SIIKONEN T.A coupled potential-viscous flow approach for the prediction of propeller effective wakes in oblique flow[J].Journal of Marine Science and Technology, 2019,24(3): 799-811.
[7]JESSUP S D, STUART D.Measurement of multiple blade rate unsteady propeller forces[R].Bethesda: Taylor Naval Ship Research and Development Center, 1990.
[8]LI C Y, HUANG X C, HUA H X.Dynamic modeling and analysis of axial vibration of a coupled propeller and shaft system[J].Journal of Mechanical Science and Technology, 2016,30(7): 2953-2960.
[9]HUANG X C, SU Z W, HUA H X.Application of a dynamic vibration absorber with negative stiffness for control of a marine shafting system[J].Ocean Engineering, 2018,155: 131-143.
[10]YOUSSEF A, GUZZOMI A, PAN J, et al.Preliminary modeling of a marine propulsion system[C]//Proceedings of Acoustics 2015.Hunter: Australian Acoustical Society, 2015.
[11]HUANG X C, NI Z, ZHANG Z G, et al.Stiffness optimization of marine propulsion shafting system by FRF-based substructuring method and sensitivity analysis[J].Ocean Engineering, 2017,144: 243-256.
[12]CHEN Y, WANG L, HUA H X.Longitudinal vibration of marine propeller-shafting system induced by inflow turbulence[J].Journal of Fluids and Structures, 2017,68: 264-278.
[13]ZOU D L, ZHANG J B, TA N, et al.Study on the axial exciting force characteristics of marine propellers considered the effect of the shaft and blade elasticity[J].Applied Ocean Research, 2019,89: 141-153.
[14]LI J S, QU Y G, HUA H X.Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEM-FEM algorithm[J].Ocean Engineering, 2017,146: 178-191.
[15]张帅, 朱锡, 侯海量.船舶螺旋桨流固耦合稳态求解算法[J].哈尔滨工程大学学报, 2012,33(5): 615-621.
ZHANG Shuai, ZHU Xi, HOU Hailiang.Computation algorithm of fluid-structure interaction of marine propellers in steady state[J].Journal of Harbin Engineering University, 2012,33(5): 615-621.
[16]YOUNG Y L.Hydroelastic behavior of flexible composite propellers in wake inflow[C]//16th International Conference on Composite Materials.Kyoto: ICCM, 2007.
[17]WEI Y S, WANG Y S.Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller’s thrust and side-forces[J].Journal of Sound and Vibration, 2013,332(8): 2038-2056.
[18]RAO Z Q, YANG C J.Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation[J].Journal of Hydrodynamics, 2017,29(4): 691-701.

PDF(1781 KB)

Accesses

Citation

Detail

段落导航
相关文章

/